
Neural Networks 3 - Neural Networks

Neural Networks 3 - Neural Networks
18NES2 - Lecture 3, Winter semester 2025/26

Zuzana Peťŕıčková

October 7, 2025

1 / 52



Neural Networks 3 - Neural Networks

Neural Networks 2 - Neural Networks

1 Review

2 Training a Neural Network

3 Python Libraries for Deep Learning

4 Training Workflow in Keras: A Complete Example
Preprocessing Training Data
Setting Hyperparameters
Model Creation
Model Compilation
Model Training (Fitting)
Callbacks in Keras
Model Evaluation and Visualization

5 Practice: Explore and Experiment

6 Graded Homework

2 / 52



Neural Networks 3 - Neural Networks

Review

What We Covered Last Time

A Brief History of Neural
Networks

Introduction to Artificial
Neural Networks

Artificial Neurons
Neural Networks and
Their Architecture
Multi-layer Neural
Network Model
(MLP)
Introduction To
Training

3 / 52



Neural Networks 3 - Neural Networks

Review

Review — Artificial Neurons

Artificial Neurons, their interpretation and activation
functions

Artificial neuron

w1

x2

xn

x1

wn

w2

inputs weights
ξ ... internal potential

y=f(ξ)

b ... bias

ξ=∑xiwi +b
y ... output 
(activity)

f ... activation 
function

Linear regression
y

y = w1.x1 + w0

x-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

Linear
classification

x2

w1.x1 +w2x2 + w0 = 0

x1-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

Internal potential: ξ =
∑n

i=1 wixi + b = w⊤x+ b

Output: y = f (ξ) (where f is the activation function)

4 / 52



Neural Networks 3 - Neural Networks

Review

Review — Multi-Layer Neural Network (Multi-Layer
Perceptron, MLP, 1980)

Hierarchical sequential architecture: neurons are arranged in
layers

Dense (fully connected) layers: every neuron in one layer is
connected to every neuron in the next layer

Special input layer: corresponds
to the inputs of the neural network

The last layer is called output
layer, the remaining layers are
hidden layers.

Output (response) of the model:

corresponds to the activities of the
output neurons

output layerinput_layer hidden layers

5 / 52



Neural Networks 3 - Neural Networks

Review

Multi-Layer Neural Network (Multi-Layer Perceptron)

How to represent the sequential NN model?

A sequence (list) of layers L0, ..., Lmax (see the Keras example)
Each layer is represented by a tensor (2D matrix) of weights
(and biases)

How to compute the model output (response):

by performing a forward pass
we process one layer at a time, starting from the input layer
and going toward the output:

present the input tensor to the current layer
compute the layer’s output
use this output as the input to the next layer

output layerinput_layer hidden layers
6 / 52



Neural Networks 3 - Neural Networks

Review

Neural Network Architecture (Topology)

Shallow model – one hidden layer
Deep model – more (or many) hidden layers

Automatically extracts features from data, reducing the need
for extensive preprocessing.

I. Goodfellow, Y. Bengio, and A. Courville:
Deep Learning, 2016, Figure 1.5

Convolutional neural network

F. Chollet: Deep Learning with Python,
Fig. 1.6

7 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Training a Neural Network (Supervised Learning)

Data used for training the model

Training set T
a set of N training samples
T = (X ,D) = {(x1, d1), ..., (xN , dN)}
X ... input data (tensor), D ... desired output (tensor)

Training sample (pattern) (xi , di )

xi ... input pattern (tensor)
di ... target / expected / desired output

Examples of input data tensors:

vector data — 2D tensor (samples, features)
time series and sequential data — 3D tensor (samples,
timesteps, features)
images — 4D tensor (samples, height, width, channels)
video — 5D tensor (samples, frames, height, width, channels)

8 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Training a Neural Network (Supervised Learning)

The number and shape of output features depend on the task:

Regression:
output tensor shape (samples, 1) or (samples, output features)
e.g. prediction of values (stock price, temperature,...)

Classification:
output tensor shape (samples, number of classes)
e.g. binary classification → shape (samples, 1)
multiclass classification → shape (samples, number of classes)

Sequential data:
output tensor shape (samples, timesteps, output features)
e.g. sentence translation → shape (samples, output sequence
length, vocabulary size)

images, video, ...

9 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Training a Layered Neural Network (MLP Model)

Let us now focus on the classical Multi-Layer Neural Network
model with n inputs and m output neurons:

Training data

Training set T = (X ,D)

X ... input patterns: 2D tensor of shape (N, n), where N is the
number of training samples, n is the number of input features
D ... desired outputs: 2D tensor of shape (N, m), where m is
the number of output features

Training sample (pattern) (x⃗i , d⃗i )

x⃗i ... vector of length n (input pattern)

d⃗i ... vector of length m (target / expected output)

Learning objective:

Adjust the weights (and biases) of all neurons in the network
so that the actual output Y matches the desired output D.

10 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Training a Layered Neural Network (MLP Model)

Basic principle (simplified)

1 Randomly initialize the model parameters (weights and biases
of all neurons).

2 Repeat the training cycle:

prepare a batch of training inputs X and corresponding targets
D
compute the actual output (prediction) of the model Y
calculate the model error (difference between Y and D)
update weights and biases to make the error slightly smaller

→ gradient descent method (or its variants)

the need of continuous and differenciable activation functions

11 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Gradient Descent Method (Steepest Descent)

Problem Definition:

We have a function f (x⃗) : Rn → R
We seek x⃗ such that f (x⃗) is minimized

→ Solution (gradient descent method):
3 2 1 0 1 2 3

x

0

2

4

6

8

10

12

14

16

f(x
)

1 Start at an (random) initial point x⃗(0)

2 Compute the gradient: ∇f (x⃗) =
(

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

)
The

gradient represents the direction and magnitude of the
greatest increase in f (x⃗)

3 Iteratively move in small steps opposite to the gradient
direction: x⃗(t + 1) = x⃗(t)− α∇f (x⃗) α is a small positive
number (step size, learning rate)

4 For a single input feature: xi (t + 1) = xi (t)− α ∂f
∂xi

12 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Challenges in Gradient Descent

Common Issues:

May converge to a local minimum instead of the global
minimum

The method has an important hyperparameter α ... learning
rate (step size)

small α → slow convergence
large α → oscillations / overshooting
the optimal value depends on the problem and on the
training phase

The learning rate is a critical hyperparameter
→ advanced optimization algorithms adjust it adaptively (e.g.,
Adam, RMSProp)

13 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Loss Function in Neural Networks

Goal of training:

Optimize the parameters (weights and biases) of the network

So that the predictions Y are as close as possible to the
desired outputs D

This is done by minimizing a loss function (cost function)

Examples of loss functions:

Regression: Mean Squared Error (MSE), Mean Absolute
Error (MAE)

MSE =
1

N

N∑
i=1

(yi − di )
2

Binary classification: Binary Cross-Entropy

Multiclass classification: Categorical Cross-Entropy

14 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Backpropagation Algorithm

Core principle: it is a standard gradient descent method
1 Randomly initialize the model parameters (weights and biases)
2 Repeat for training epochs:

Prepare a batch of input samples X and their corresponding
target outputs D
Compute the model’s actual outputs Y
Compute the model error (based on the difference between Y
and D)
Update parameters (weights and biases) to slightly reduce the
error (i.e., move in the opposite direction of the loss gradient):

wi (t + 1) = wi (t)− αt
∂Et

∂wi

Adjust the learning rate αt → αt+1

Nice visualizations of loss surfaces:
jithinjk.github.io/blog/nn loss visualized.md.html
izmailovpavel.github.io/curves blogpost

15 / 52

https://jithinjk.github.io/blog/nn_loss_visualized.md.html
https://izmailovpavel.github.io/curves_blogpost/


Neural Networks 3 - Neural Networks

Training a Neural Network

Backpropagation Algorithm

Core principle: backpropagation is gradient descent done
efficiently.

Key idea:

We do not calculate the error derivative
separately for every single weight — that
would be extremely inefficient.

Instead, each layer reuses error
information from the layer above.

By passing these error terms backwards
through the network (layer by layer), we
can update all weights efficiently in a
single backward pass.

This makes it possible to train deep
neural networks in practice.

1. forward pass

2. backward pass

16 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Backpropagation Algorithm

Basic principle of backpropagation:
1 Compute the actual network

output for the given batch of
training samples

by a single pass from the input to
the output layer (forward pass)

2 Compare the actual and desired
outputs

3 Update the weights and biases:

in the direction opposite to the
gradient of the loss
using a single pass from the
output to the input layer
(backward pass)

1. forward pass

2. backward pass

17 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Backpropagation – How to Present Training Samples

Classical Presentation strategies:
1 Sample-wise per epoch (Online GD): Each sample is

presented once per epoch, samples are shuffled every epoch.
Maximum number of epochs = how many times the full
dataset is presented.
Fast training, but relatively unstable.

2 Batch-wise per epoch (Batch GD):
The entire training set is used at once to compute and apply a
single weight update.
More stable, but computationally and memory intensive for
large datasets.

Deep learning: Mini-batch training (Stochastic GD, SGD):

Training set is randomly split into small batches that are
processed iteratively.

Combines advantages of both previous methods.
18 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Backpropagation Algorithm

Stopping conditions:

Maximum number of epochs

Training error drops below threshold: E < Emin

Validation error stops decreasing (early stopping)

Weight updates become very small

19 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Multi-Layer Neural Network (MLP) – Model Analysis

Advantages:

Simple yet powerful universal model with good approximation
and generalization ability

Suitable for both classification and regression tasks
Able to capture complex nonlinear relationships

Universal approximator – can approximate any continuous
function (with nonlinear activation functions, a single hidden
layer is sufficient). However, the learning problem is
NP-complete.

Uses backpropagation for efficient gradient-based learning

Generalizes reasonably well on unseen data

20 / 52



Neural Networks 3 - Neural Networks

Training a Neural Network

Multi-Layer Neural Network (MLP) – Model Analysis

Disadvantages:

The model is highly sensitive to weight initialization, training
data, and hyperparameters, which need to be carefully tuned.

Input and output data must be in vectorized numerical form.

Slow convergence – although faster variants exist (e.g., Adam
optimizer).

Local learning method – can end up in suboptimal solutions

Prone to overfitting – mitigated by regularization, early
stopping, etc.

Lacks built-in mechanisms to exploit spatial or sequential
structure in data (� need for CNNs, RNNs, Transformers)

“Black box” – the internal knowledge representation (weights
and biases) is difficult for humans to interpret.

21 / 52



Neural Networks 3 - Neural Networks

Python Libraries for Deep Learning

Neural Networks 2 - Neural Networks

1 Review

2 Training a Neural Network

3 Python Libraries for Deep Learning

4 Training Workflow in Keras: A Complete Example
Preprocessing Training Data
Setting Hyperparameters
Model Creation
Model Compilation
Model Training (Fitting)
Callbacks in Keras
Model Evaluation and Visualization

5 Practice: Explore and Experiment

6 Graded Homework

22 / 52



Neural Networks 3 - Neural Networks

Python Libraries for Deep Learning

Main Deep Learning Frameworks in Python

TensorFlow – Open-source library by Google.
Powerful framework for AI applications (mobile, server).
Supports both static and dynamic computation graphs.

PyTorch – Open-source library by Meta (Facebook).
Flexible and intuitive, ideal for research and academia.
Dynamic computation graphs, easy debugging.

Keras – High-level universal API.
Beginner-friendly and easy to understand.
Great for fast prototyping. Runs on top of TensorFlow, JAX,
or PyTorch.

PyTorch Lightning – High-level wrapper for PyTorch.
Reduces boilerplate code in training routines.
Supports multi-GPU training, scaling, and reproducibility.

JAX (Google, Nvidia,...) – Optimized for speed and
experimental research

Previously popular Theano – now deprecated.
23 / 52



Neural Networks 3 - Neural Networks

Python Libraries for Deep Learning

TensorFlow vs PyTorch – Comparison

TensorFlow – robust and production-ready, but more rigid:

Part of a broader ecosystem (TensorBoard, TF Lite, etc.).

Very efficient (C++/Python hybrid), supports distributed training,
native TPU support.

Optimized for deployment, mobile support (TF Lite), model
compilation.

Less developer-friendly: more code, harder to define custom models.

Difficult debugging of complex models (C++ backend).

PyTorch – newer, rapidly evolving, research-focused:

Pythonic, concise, and easier to use; gaining feature parity.

Slightly less performant (pure Python), but highly flexible.

Custom models and layers are very easy to implement and debug.

24 / 52



Neural Networks 3 - Neural Networks

Python Libraries for Deep Learning

Other Useful Libraries

Data manipulation and numerical computing:

Scikit-learn (sklearn) – classic ML algorithms; tools for data
processing and model evaluation.
NumPy – efficient numerical computing with arrays and
tensors.
Pandas – powerful data manipulation library for structured
data (categorical, missing values).

Visualization:

Matplotlib – general-purpose plotting (static, animated,
interactive).
Plotly – interactive visualizations.
Seaborn – statistical data visualization (correlations,
distributions, etc.).
TensorBoard – visualization of the training progress,
especially for TensorFlow.

25 / 52



Neural Networks 3 - Neural Networks

Python Libraries for Deep Learning

Practical Examples

useful python libraries.ipynb

Commented examples of the usage of useful Python libraries
(NumPy, Pandas, Matplotlib...)

NN libraries.ipynb

Commented examples comparing major deep learning
frameworks (Keras, TensorFlow, PyTorch, Lightning) on a
simple binary classification task.

Demonstration of automatic symbolic tensor differentiation in
TensorFlow and PyTorch.

Frameworks and GPU support in practice.

NN libraries installation.ipynb

Brief installation guide for running the examples locally on
your own machine.

26 / 52

https://github.com/reitezuz/18NES2-2025/blob/main/week_01/useful_python_libraries.ipynb
https://github.com/reitezuz/18NES2-2025/blob/main/week_01/NN_libraries.ipynb
https://github.com/reitezuz/18NES2-2025/blob/main/week1/NN_libraties_installation.ipynb


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Training Workflow in Keras: A Complete Example

What is essential for the success of the training?

Proper preprocessing of the training data

Careful tuning of model hyperparameters for the specific task

keras extended example.ipynb

A comprehensive, step-by-step Keras example demonstrating
the complete learning workflow for a MLP model (on a binary
classification task)

Data preprocessing and analysis, model creation and
hyperparameter tuning, training process monitoring,
visualization, and evaluation

Visualization using TensorBoard.

During the session, we will switch between the slides and the
example notebook.

27 / 52

https://github.com/reitezuz/18NES2-2025/blob/main/week_03/keras_extended_example.ipynb


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Preprocessing Training Data

Preprocessing Training Data

Key preprocessing steps:

Serialization (specific to MLP models):
Convert input and output data into 2D tensors of shape
(samples, numerical features)

Handling categorical variables:
Ordinal encoding: If categories can be ordered, convert each
category into a numeric value and normalize it
One-hot encoding: Convert categorical variables into binary
vectors (e.g., categories ”A”, ”B”, ”C” become [1, 0, 0], [0, 1,
0], [0, 0, 1])

Ensuring data consistency:
Check that all input vectors have the same length and no
missing values.
Replace missing values using the mean, median, or more
advanced imputation techniques.

28 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Preprocessing Training Data

Preprocessing Training Data

Key preprocessing steps (continued):

Normalization/Standardization of inputs:
Normalization: Scale features to a fixed range, such as [0, 1]
or [-1, 1], depending on the activation function (e.g., ReLU vs.
tanh).
Standardization: Typically adjust features to have zero mean
and unit variance.
Normalization is crucial for stable and efficient training.

Training set should be sufficiently large and balanced.
In some cases, data augmentation is necessary to increase
the number of training samples.

Split data into training, validation, and test sets:
A common split is 70% training, 15% validation, and 15% test
set.

29 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Setting Hyperparameters

Key Hyperparameters of a MLP Model

Architecture

Model size: Number of hidden layers and number of neurons
per layer
Activation functions in each layer: relu, sigmoid, tanh,
softmax, ...

Other key hyperparameters

Loss function: MSE, binary crossentropy, ...
Evaluation metrics: accuracy, MSE, precision, ...
Optimization algorithm: SGD, Adam, RMSProp, ...
Learning rate, and possibly other optimizer-specific
parameters
Batch size
Number of epochs
Weight initialization: Typically small random values
Regularization: L2, Dropout, Early stopping, ...

30 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Creation

Architecture of a Multi-layer Neural Network

Creating a model in Keras

Sequential – the simplest way to build a model, stacking
layers sequentially.

Input – input layer (can be omitted in simple cases)

Dense – fully connected layer
Number of neurons
Activation function: activation=’relu’, ’sigmoid’, ’linear’
(default), ...
Weight initialization method:
kernel initializer=’glorot uniform’, bias initializer=’zeros’
(default), ...
Example: Dense(10, activation=’relu’,
kernel initializer=’he normal’)

Official documentation:
https://keras.io/api/layers/core layers/dense/

31 / 52

https://keras.io/api/layers/core_layers/dense/


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Creation

Architecture of a Multi-layer Neural Network

Model size: Defined by the number of layers and neurons in
each layer

How to choose model size?

Input and output layers: The number of neurons is
determined by the data shape.

Hidden layers:
Larger model = higher capacity → better at capturing
complex patterns
Small model → underfitting, cannot capture complex
relationships
Too large model with limited data → overfitting
The optimal number of layers and neurons depends on the task
complexity and data size; usually selected experimentally.

32 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Creation

Architecture of a Multi-layer Neural Network

Shallow model – one hidden layer

Better suited for simpler tasks – learns faster and generalizes
well
Performs better on small datasets (large datasets may not help
much)
Easier to understand and interpret
Learns complex tasks slowly and may require many neurons

Deep model – more (or many) hidden layers

More suitable for complex tasks with large training datasets
Capable of learning intricate patterns in the data
Requires different training strategies and poses different
challenges

33 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Creation

Model Size and Its Effect on MLP Performance

Practical recommendations:

Start with a smaller model and gradually increase size as
needed.

Use validation data to monitor performance and avoid
overfitting.

If overfitting occurs, apply techniques like regularization, early
stopping, or dropout.

Choose a good balance between width (neurons per layer) and
depth (number of layers).

For smaller datasets, prefer smaller models.

34 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Creation

Which Activation Functions to Use?

Which activation function for the output layer?

Regression task: linear (linear)

Binary classification: sigmoid (sigmoid)

Multi-class classification: softmax

Which activation function for hidden layers?

Hyperbolic tangent (tanh) – stable, symmetric; can suffer
from saturation; popular in recurrent models

In deep networks, ReLU is commonly used – fast and
effective, but asymmetric and limited in expressive power
(saturation risk still exists)

https://keras.io/api/layers/activations/

35 / 52

https://keras.io/api/layers/activations/


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Creation

Proper Initialization of Weights and Biases

Rule of thumb:

Weights and biases should be small, random, uniformly
distributed, and centered around zero.

Recommendations:

For ReLU: He initialization (HeUniform, HeNormal) –
maintains variance of neuron outputs

For sigmoid/tanh/linear: Glorot (Xavier) initialization
(GlorotUniform, GlorotNormal)

Defaults in Keras:

Dense layer → kernel initializer=’glorot uniform’

Biases → initialized to zeros by default

https://keras.io/api/layers/initializers/

36 / 52

https://keras.io/api/layers/initializers/


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Compilation

Model Compilation in Keras (model.compile)

Used to define how the model will learn.

Key arguments:

optimizer – the learning algorithm (e.g., ’adam’, ’sgd’, or
Adam(learning rate=0.001))

loss – loss function to be minimized during training

metrics – metrics for monitoring and evaluating model
performance (e.g., [’accuracy’], [’mae’])

Example:
model.compile(optimizer=’adam’,

loss=’binary crossentropy’, metrics=[’accuracy’])

37 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Compilation

Which Loss Function to Use?

For regression tasks:

MSE (loss=’mean squared error’)
Most commonly used loss function for regression
Sensitive to outliers

MAE (loss=’mean absolute error’) – more robust to
outliers

Huber Loss (loss=’huber’) – hybrid of MSE and MAE

...

https://keras.io/api/losses/

38 / 52

https://keras.io/api/losses/


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Compilation

Which Loss Function to Use?

For classification tasks:

Binary Crossentropy (loss = ’binary crossentropy’)
Suitable for binary classification together with a sigmoid
activation in the output layer

Categorical Crossentropy (loss =
’categorical crossentropy’)

Suitable for multi-class classification with softmax output
Assumes one-hot-encoded labels

Sparse Categorical Crossentropy (loss =
’sparse categorical crossentropy’)

Similar to categorical crossentropy but uses integer class
indices instead of one-hot encoding

39 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Compilation

Which Metric to Use for Model Evaluation?

Classification:

Accuracy – proportion of correctly classified samples
Binary classification: accuracy, binary accuracy
Multi-class classification: categorical accuracy (for one-hot
labels), sparse categorical accuracy (for integer labels)

Other metrics for binary classification:
AUC – area under the ROC curve; useful for imbalanced
datasets
Precision, Recall, F1 – useful when minimizing false positives
or false negatives

Regression:

mean squared error (MSE) – for typical regression tasks

mean absolute error (MAE) – better when data contains
outliers

https://keras.io/api/metrics/
40 / 52

https://keras.io/api/metrics/


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Compilation

Which Metric to Use for Model Evaluation?

Source: https://en.wikipedia.org/wiki/Precision and recall, license CC0 41 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Compilation

Optimizers for Deep Neural Networks

Based on gradient descent; often use adaptive and local
learning rates

SGD (Stochastic Gradient Descent) – basic optimizer, uses
mini-batches; stable
Adam – currently the most popular; adaptive learning rate;
faster convergence
RMSprop – suitable for sequential and online data
AdaGrad, Adadelta, AdaMax, NAdam, FTRL, ...

Each optimizer has additional hyperparameters (e.g., SGD:
learning rate, momentum, nesterov)
In most cases, the default settings work well.

https://keras.io/api/optimizers/

42 / 52

https://keras.io/api/optimizers/


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Compilation

Choosing the Right Learning Rate

For SGD, setting the learning rate correctly is crucial.

It controls how quickly the model learns.

How to choose the learning rate?

Too small → slow learning, risk of getting stuck in a local
minimum

Too large → unstable learning, risk of overshooting the
minimum and oscillations

What helps?

Tuning the learning rate for your specific task

Using momentum (momentum, nesterov)

Using adaptive optimizers (Adam, RMSprop)

43 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Training (Fitting)

Training the Model in Keras (model.fit)

Key arguments:

x, y – input patterns and desired outputs

batch size – number of samples processed at once (e.g., 32)

epochs – number of passes through the entire dataset

validation data – validation set, e.g., (x val, y val)

callbacks – functions called during training (e.g.,
EarlyStopping)

shuffle=True – shuffle the data before each epoch

Example:
model.fit(x train, y train, batch size=32, epochs=10,

validation data=(x val, y val), shuffle=True)

Documentation:
https://keras.io/api/models/model training apis/#fit-method

44 / 52

https://keras.io/api/models/model_training_apis/#fit-method


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Training (Fitting)

Other Key Hyperparameters for MLP

Batch size – number of samples in one mini-batch

Typically a power of 2 (8, 16, 32, 64, ...)
Small batches: slower, less stable learning; often better
generalization
Large batches (512+): faster training, higher memory usage,
increased risk of overfitting
Recommendation: Use smaller batches for small datasets.
For large datasets, use the largest possible batch size that fits
in memory, while monitoring generalization.

Number of epochs
Determined experimentally; use early stopping to avoid
overfitting

45 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Callbacks in Keras

Callbacks in Keras

Functions called during model training
→ enable monitoring, model saving, early stopping, etc.

Most commonly used callbacks:

EarlyStopping – stops training when validation performance
stops improving
ModelCheckpoint – saves the best model based on a chosen
metric
ReduceLROnPlateau – reduces the learning rate when a
metric has stopped improving
TensorBoard – logs training metrics for interactive
visualization

Usage: see example in notebook

Documentation:
https://keras.io/api/callbacks/

46 / 52

https://keras.io/api/callbacks/


Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Evaluation and Visualization

Keras Model – Evaluation, Prediction, Saving and
Loading

evaluate() – evaluate model performance on test data

Returns a tuple of loss and metrics values:
loss, accuracy = model.evaluate(x test, y test)

predict() – compute model outputs

Example for classification:
y pred = model.predict(x test)

save() – save the model to a file

model.save("model.keras")

load model() – load a saved model

model = load model("model.keras")

47 / 52



Neural Networks 3 - Neural Networks

Training Workflow in Keras: A Complete Example

Model Evaluation and Visualization

TensorBoard

A tool for visualizing training and evaluation of neural
networks.
Displays loss curves, metrics, model graph, weight
distributions, and more.
Enables real-time monitoring during training.
Supports comparison of multiple model runs.

Usage in Keras:

from keras.callbacks import TensorBoard

log_dir = "logs/fit/" + ...

tensorboard_callback = TensorBoard(log_dir=log_dir,...)

model.fit(..., callbacks=[tensorboard_callback,...])

Run from terminal:
tensorboard --logdir=logs/fit

Documentation: tensorflow.org/tensorboard
48 / 52

https://www.tensorflow.org/tensorboard


Neural Networks 3 - Neural Networks

Practice: Explore and Experiment

Practice: Explore and Experiment

keras extended example.ipynb

Experiment with how changing various hyperparameters
(architecture, optimizer, etc.) affects the learning process and
performance.

The notebook includes suggestions for what to try.

Explore the use of TensorBoard – optionally run it locally on
your own computer to visualize training progress.

Further exercises:

Train a MLP on other datasets from the scikit-learn dataset
repository (e.g., iris, diabetes, wine).

Try reproducing the full workflow from scratch — data
loading, preprocessing, model creation, compilation, training,
and evaluation.

49 / 52

https://github.com/reitezuz/18NES2-2025/blob/main/week_03/keras_extended_example.ipynb
https://scikit-learn.org/stable/api/sklearn.datasets.html
https://scikit-learn.org/stable/api/sklearn.datasets.html


Neural Networks 3 - Neural Networks

Practice: Explore and Experiment

Practice: Explore and Experiment

Interactive MLP Playground – Simple Visual Demos
https://playground.tensorflow.org/

Interactive demo illustrating how a multilayer perceptron
learns.
Includes five classification tasks (of increasing difficulty – the
spiral task is the most challenging).
You can configure network architecture and training
parameters.
Excellent visualizations: loss over time, weight signs and
magnitudes, neuron behavior.
Great for experimenting: how many layers and neurons are
needed for which task?
Challenge: can you train a model that solves the spiral task?

Note: We explored this tool in detail in the previous semester
(18NES1).

50 / 52

https://playground.tensorflow.org/


Neural Networks 3 - Neural Networks

Graded Homework

1st Graded Homework: MLP Training in Keras (1 point)

Task:

Train and evaluate a MLP in Keras on a small dataset from
scikit-learn.

You can use the example from the lecture
(keras extended example.ipynb) as a template and
reproduce the full workflow: data loading, preprocessing,
model creation, compilation, training, and evaluation.

Choose one of the following datasets:
Classification:

load iris() – 3 classes, 4 features (very small, clean)
load wine() – 3 classes, 13 features (slightly richer)

Regression:
load diabetes() – 10 features, small sample (classic toy
regression)
fetch california housing() – 8 features, larger sample

51 / 52

https://scikit-learn.org/stable/datasets.html


Neural Networks 3 - Neural Networks

Graded Homework

1st Graded Homework: MLP Training in Keras (1 point)

Requirements

You can start from the provided example notebook and adapt
it to your chosen dataset.
Ensure correct preprocessing (e.g., StandardScaler); for
classification report accuracy (and optionally F1/confusion
matrix); for regression report MSE (and optionally MAE and
R2).
Show training curves (loss/metric) and briefly discuss
under/overfitting.
Experiment with at least three hyperparameter changes
(layers/units, activation, optimizer, learning rate, etc.).
Provide a short summary of your findings in the notebook.

Submission:

Email your solution notebook (.ipynb) by Oct 14, 2025.
Consultation (during lab or individually) required by Oct
17, 2025 to receive points. 52 / 52


	Review
	Training a Neural Network
	Python Libraries for Deep Learning
	Training Workflow in Keras: A Complete Example
	Preprocessing Training Data
	Setting Hyperparameters
	Model Creation
	Model Compilation
	Model Training (Fitting)
	Callbacks in Keras
	Model Evaluation and Visualization

	Practice: Explore and Experiment
	Graded Homework

