Neural Networks 3 - Neural Networks

Neural Networks 3 - Neural Networks
18NES2 - Lecture 3, Winter semester 2025/26

Zuzana Petfi¢kova

October 7, 2025

1/52

Neural Networks 3 - Neural Networks

Neural Networks 2 - Neural Networks

© Review

© Training a Neural Network
© Python Libraries for Deep Learning

@ Training Workflow in Keras: A Complete Example
@ Preprocessing Training Data
@ Setting Hyperparameters
@ Model Creation
@ Model Compilation
@ Model Training (Fitting)
@ Callbacks in Keras
@ Model Evaluation and Visualization

© Practice: Explore and Experiment
@ Graded Homework

2/52

Neural Networks 3 - Neural Networks
Review

What We Covered Last Time

@ A Brief History of Neural
Networks

@ Introduction to Artificial
Neural Networks

Artificial Intelligence

o Artificial Neurons

o Neural Networks and [worveicn 3

Their Architecture v
e Multi-layer Neural lll-
Network Model : x
(MLP) o
e Introduction To 1
Training

3/52

Neural Networks 3 - Neural Networks
Review

Review — Artificial Neurons

Artificial Neurons, their interpretation and activation

functions Li
. . inear
Linear regression o
v classification
Artificial neuron T vemeaen ,
2 X x x xx
inputs weights b \\ X 21 X
X %‘ &... internal potential) N % N K ox
X X L= \\ 1 X
X Y= B I R
. Gk = %o 2 e
-2 \\\
-3 \\\
-3 \\

o Internal potential: & =" wix;+b = w'x+b
@ Output: y =1(§) (where f is the activation function)

4/52

Neural Networks 3 - Neural Networks
Review

Review — Multi-Layer Neural Network (Multi-Layer
Perceptron, MLP, 1980)

@ Hierarchical sequential architecture: neurons are arranged in
layers

e Dense (fully connected) layers: every neuron in one layer is
connected to every neuron in the next layer

@ Special input layer: corresponds
to the inputs of the neural network

@ The last layer is called output
layer, the remaining layers are
hidden layers.

Output (response) of the model:

@ corresponds to the activities of the
output neurons

input_layer

hidden layers output layer

5/52

Neural Networks 3 - Neural Networks
Review

Multi-Layer Neural Network (Multi-Layer Perceptron)

How to represent the sequential NN model?
@ A sequence (list) of layers Lo, ..., Lmax (see the Keras example)
@ Each layer is represented by a tensor (2D matrix) of weights
(and biases)
How to compute the model output (response):
@ by performing a forward pass
@ we process one layer at a time, starting from the input layer
and going toward the output:
e present the input tensor to the current layer
e compute the layer’s output
@ use this output as the input to the next layer

6/52

Neural Networks 3 - Neural Networks
Review

Neural Network Architecture (Topology)

e Shallow model — one hidden layer
e Deep model — more (or many) hidden layers
e Automatically extracts features from data, reducing the need
for extensive preprocessing.

Convolutional neural network

Layer 1 Layer2 Layer3

HH

F. Chollet: Deep Learning with Python,
: Fig. 1.6

I. Goodfellow, Y. Bengio, and A. Courville:
Deep Learning, 2016, Figure 1.5

. m . i
inato ‘p "

7/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Training a Neural Network (Supervised Learning)

Data used for training the model
o Training set T
e a set of N training samples
T = ()(7 D) = {(Xl, dl), cony (X/\/7 d/\/)}
e X ... input data (tensor), D ... desired output (tensor)
e Training sample (pattern) (x;, d;)
e X; ... input pattern (tensor)
o d; ... target / expected / desired output
@ Examples of input data tensors:

o vector data — 2D tensor (samples, features)

o time series and sequential data — 3D tensor (samples,
timesteps, features)

o images — 4D tensor (samples, height, width, channels)

e video — 5D tensor (samples, frames, height, width, channels)

8/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Training a Neural Network (Supervised Learning)

The number and shape of output features depend on the task:

o Regression:
output tensor shape (samples, 1) or (samples, output features)
e.g. prediction of values (stock price, temperature,...)

o Classification:
output tensor shape (samples, number of classes)
e.g. binary classification — shape (samples, 1)
multiclass classification — shape (samples, number of classes)

@ Sequential data:
output tensor shape (samples, timesteps, output features)
e.g. sentence translation — shape (samples, output sequence
length, vocabulary size)

@ images, video, ...

9/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Training a Layered Neural Network (MLP Model)

@ Let us now focus on the classical Multi-Layer Neural Network
model with n inputs and m output neurons:
Training data
e Training set T = (X, D)
o X ... input patterns: 2D tensor of shape (N, n), where N is the
number of training samples, n is the number of input features
e D ... desired outputs: 2D tensor of shape (N, m), where m is
the number of output features
e Training sample (pattern) (X, d;)
e X; ... vector of length n (input pattern)
o d; ... vector of length m (target / expected output)
Learning objective:

@ Adjust the weights (and biases) of all neurons in the network
so that the actual output Y matches the desired output D.

10/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Training a Layered Neural Network (MLP Model)

Basic principle (simplified)
@ Randomly initialize the model parameters (weights and biases
of all neurons).

@ Repeat the training cycle:
@ prepare a batch of training inputs X and corresponding targets

D
e compute the actual output (prediction) of the model Y
o calculate the model error (difference between Y and D)
e update weights and biases to make the error slightly smaller

— gradient descent method (or its variants)
@ the need of continuous and differenciable activation functions

11/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Gradient Descent Method (Steepest Descent)

Problem Definition:

e We have a function f(x) : R" - R

@ We seek X such that f(X) is minimized
— Solution (gradient descent method): \\

@ Start at an (random) initial point X(0)
@ Compute the gradient: V£(X) = (‘9f of .. 8f) The

Ox17 Ox2? " " "7 Oxp
gradient represents the direction and magnitude of the
greatest increase in f(X)

© lteratively move in small steps opposite to the gradient
direction: X(t + 1) = X(t) — aVf(X) « is a small positive
number (step size, learning rate)

@ For a single input feature: x;(t + 1) = x;(t) — a2~

ax,-

12/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Challenges in Gradient Descent

Common Issues:
@ May converge to a local minimum instead of the global
minimum
@ The method has an important hyperparameter « ... learning
rate (step size)
e small @ — slow convergence

e large a — oscillations / overshooting
o the optimal value depends on the problem and on the

training phase

@ The learning rate is a critical hyperparameter
— advanced optimization algorithms adjust it adaptively (e.g.,
Adam, RMSProp)

13/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Loss Function in Neural Networks

Goal of training:
@ Optimize the parameters (weights and biases) of the network

@ So that the predictions Y are as close as possible to the
desired outputs D

@ This is done by minimizing a loss function (cost function)
Examples of loss functions:

o Regression: Mean Squared Error (MSE), Mean Absolute
Error (MAE)

N
1 2
MSE = ;(y; —d;)

e Binary classification: Binary Cross-Entropy

@ Multiclass classification: Categorical Cross-Entropy

14 /52

Neural Networks 3 - Neural Networks
Training a Neural Network

Backpropagation Algorithm

Core principle: it is a standard gradient descent method
@ Randomly initialize the model parameters (weights and biases)
@ Repeat for training epochs:
o Prepare a batch of input samples X and their corresponding
target outputs D
e Compute the model’s actual outputs Y
o Compute the model error (based on the difference between Y
and D)
o Update parameters (weights and biases) to slightly reduce the
error (i.e., move in the opposite direction of the loss gradient):

OE;

wi(t+1) = w;(t) — O‘faw,-

o Adjust the learning rate oy — ary1
Nice visualizations of loss surfaces:
jithinjk.github.io/blog/nn_loss_visualized.md.html

izmailovpavel.github.io/curves_blogpost)
15 /52

https://jithinjk.github.io/blog/nn_loss_visualized.md.html
https://izmailovpavel.github.io/curves_blogpost/

Neural Networks 3 - Neural Networks
Training a Neural Network

Backpropagation Algorithm

Core principle: backpropagation is gradient descent done
efficiently.
Key idea:
@ We do not calculate the error derivative
separately for every single weight — that
would be extremely inefficient. 1. forward pass

@ Instead, each layer reuses error
information from the layer above.

@ By passing these error terms backwards
through the network (layer by layer), we
can update all weights efficiently in a
single backward pass.

2. backward pass

@ This makes it possible to train deep
neural networks in practice.

16 /52

Neural Networks 3 - Neural Networks
Training a Neural Network

Backpropagation Algorithm

Basic principle of backpropagation:
@ Compute the actual network
output for the given batch of
training samples
o by a single pass from the input to
the output layer (forward pass)

@ Compare the actual and desired
outputs

© Update the weights and biases:

e in the direction opposite to the
gradient of the loss

e using a single pass from the
output to the input layer
(backward pass)

1. forward pass

2. backward pass

17/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Backpropagation — How to Present Training Samples

Classical Presentation strategies:
@ Sample-wise per epoch (Online GD): Each sample is
presented once per epoch, samples are shuffled every epoch.

e Maximum number of epochs = how many times the full
dataset is presented.
o Fast training, but relatively unstable.

@ Batch-wise per epoch (Batch GD):

e The entire training set is used at once to compute and apply a
single weight update.

e More stable, but computationally and memory intensive for
large datasets.

Deep learning: Mini-batch training (Stochastic GD, SGD):

@ Training set is randomly split into small batches that are
processed iteratively.

@ Combines advantages of both previous methods.

18/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Backpropagation Algorithm

Stopping conditions:
@ Maximum number of epochs
@ Training error drops below threshold: E < Ep,ip
e Validation error stops decreasing (early stopping)

@ Weight updates become very small

19/52

Neural Networks 3 - Neural Networks
Training a Neural Network

Multi-Layer Neural Network (MLP) — Model Analysis

Advantages:

@ Simple yet powerful universal model with good approximation
and generalization ability

e Suitable for both classification and regression tasks
o Able to capture complex nonlinear relationships

@ Universal approximator — can approximate any continuous
function (with nonlinear activation functions, a single hidden
layer is sufficient). However, the learning problem is
NP-complete.

@ Uses backpropagation for efficient gradient-based learning

o Generalizes reasonably well on unseen data

20/52

Neural Networks 3 - Neural Networks

Training a Neural Network

Multi-Layer Neural Network (MLP) — Model Analysis

Disadvantages:

The model is highly sensitive to weight initialization, training
data, and hyperparameters, which need to be carefully tuned.

Input and output data must be in vectorized numerical form.
Slow convergence — although faster variants exist (e.g., Adam
optimizer).

Local learning method — can end up in suboptimal solutions

Prone to overfitting — mitigated by regularization, early
stopping, etc.

Lacks built-in mechanisms to exploit spatial or sequential
structure in data (— need for CNNs, RNNs, Transformers)

“Black box" — the internal knowledge representation (weights
and biases) is difficult for humans to interpret.

21/52

© Review

© Training a Neural Network

()

e Python Libraries for Deep Learning

@ Preprocessing Training Data

Setting Hyperparameters

@ Training Workflow in Keras: A Complete Example
Model Creation

o
@ Model Compilation
@ Model Training (Fitting)
@ Callbacks in Keras
@ Model Evaluation and Visualization
P
G

ractice: Explore and Experiment
raded Homework

«O> «Fr «=)r «=)»

Da
22/52

Neural Networks 3 - Neural Networks
Python Libraries for Deep Learning

Main Deep Learning Frameworks in Python

@ TensorFlow — Open-source library by Google.

o Powerful framework for Al applications (mobile, server).

e Supports both static and dynamic computation graphs.
PyTorch — Open-source library by Meta (Facebook).

o Flexible and intuitive, ideal for research and academia.

e Dynamic computation graphs, easy debugging.

Keras — High-level universal API.
e Beginner-friendly and easy to understand.
e Great for fast prototyping. Runs on top of TensorFlow, JAX,
or PyTorch.
PyTorch Lightning — High-level wrapper for PyTorch.

o Reduces boilerplate code in training routines.

e Supports multi-GPU training, scaling, and reproducibility.
JAX (Google, Nvidia,...) — Optimized for speed and
experimental research
Previously popular Theano — now deprecated.

23/52

Neural Networks 3 - Neural Networks

Python Libraries for Deep Learning

TensorFlow vs PyTorch — Comparison

TensorFlow — robust and production-ready, but more rigid:

Part of a broader ecosystem (TensorBoard, TF Lite, etc.).

Very efficient (C++/Python hybrid), supports distributed training,
native TPU support.

Optimized for deployment, mobile support (TF Lite), model
compilation.

Less developer-friendly: more code, harder to define custom models.

Difficult debugging of complex models (C++ backend).

PyTorch — newer, rapidly evolving, research-focused:

Pythonic, concise, and easier to use; gaining feature parity.
Slightly less performant (pure Python), but highly flexible.
Custom models and layers are very easy to implement and debug.

24 /52

Neural Networks 3 - Neural Networks
Python Libraries for Deep Learning

Other Useful Libraries

Data manipulation and numerical computing:
e Scikit-learn (sklearn) — classic ML algorithms; tools for data
processing and model evaluation.
@ NumPy — efficient numerical computing with arrays and
tensors.
e Pandas — powerful data manipulation library for structured
data (categorical, missing values).
Visualization:
e Matplotlib — general-purpose plotting (static, animated,
interactive).
@ Plotly — interactive visualizations.
e Seaborn - statistical data visualization (correlations,
distributions, etc.).
@ TensorBoard — visualization of the training progress,

especially for TensorFlow.
25/52

Neural Networks 3 - Neural Networks
Python Libraries for Deep Learning

Practical Examples

useful_python_libraries.ipynb

o Commented examples of the usage of useful Python libraries
(NumPy, Pandas, Matplotlib...)

NN _libraries.ipynb

@ Commented examples comparing major deep learning
frameworks (Keras, TensorFlow, PyTorch, Lightning) on a
simple binary classification task.

@ Demonstration of automatic symbolic tensor differentiation in
TensorFlow and PyTorch.

@ Frameworks and GPU support in practice.
NN _libraries_installation.ipynb

@ Brief installation guide for running the examples locally on
your own machine.

2652

https://github.com/reitezuz/18NES2-2025/blob/main/week_01/useful_python_libraries.ipynb
https://github.com/reitezuz/18NES2-2025/blob/main/week_01/NN_libraries.ipynb
https://github.com/reitezuz/18NES2-2025/blob/main/week1/NN_libraties_installation.ipynb

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example

Training Workflow in Keras: A Complete Example

What is essential for the success of the training?

@ Proper preprocessing of the training data

@ Careful tuning of model hyperparameters for the specific task
keras_extended_example.ipynb

@ A comprehensive, step-by-step Keras example demonstrating
the complete learning workflow for a MLP model (on a binary
classification task)

@ Data preprocessing and analysis, model creation and
hyperparameter tuning, training process monitoring,
visualization, and evaluation

@ Visualization using TensorBoard.

During the session, we will switch between the slides and the
example notebook.

27/ 52

https://github.com/reitezuz/18NES2-2025/blob/main/week_03/keras_extended_example.ipynb

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Preprocessing Training Data

Preprocessing Training Data

Key preprocessing steps:
e Serialization (specific to MLP models):
o Convert input and output data into 2D tensors of shape
(samples, numerical features)
@ Handling categorical variables:
e Ordinal encoding: If categories can be ordered, convert each
category into a numeric value and normalize it
e One-hot encoding: Convert categorical variables into binary
vectors (e.g., categories "A", "B”, "C" become [1, 0, 0], [0, 1,
0], [0, 0, 1])
o Ensuring data consistency:
o Check that all input vectors have the same length and no

missing values.
e Replace missing values using the mean, median, or more
advanced imputation techniques.

28/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Preprocessing Training Data

Preprocessing Training Data

Key preprocessing steps (continued):
e Normalization/Standardization of inputs:

o Normalization: Scale features to a fixed range, such as [0, 1]
or [-1, 1], depending on the activation function (e.g., ReLU vs.
tanh).

e Standardization: Typically adjust features to have zero mean
and unit variance

e Normalization is crucial for stable and efficient training.

e Training set should be sufficiently large and balanced.

o In some cases, data augmentation is necessary to increase
the number of training samples.

o Split data into training, validation, and test sets:

o A common split is 70% training, 15% validation, and 15% test
set.

29/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Setting Hyperparameters

Key Hyperparameters of a MLP Model

Architecture
@ Model size: Number of hidden layers and number of neurons
per layer
@ Activation functions in each layer: relu, sigmoid, tanh,
softmax, ...
Other key hyperparameters
@ Loss function: MSE, binary crossentropy, ...

e Evaluation metrics: accuracy, MSE, precision, ...

e Optimization algorithm: SGD, Adam, RMSProp, ...

@ Learning rate, and possibly other optimizer-specific
parameters

o Batch size

@ Number of epochs

@ Weight initialization: Typically small random values

o Regularization: L2, Dropout, Early stopping,

30/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Creation

Architecture of a Multi-layer Neural Network

Creating a model in Keras

@ Sequential — the simplest way to build a model, stacking
layers sequentially.
@ Input — input layer (can be omitted in simple cases)
@ Dense — fully connected layer
e Number of neurons
e Activation function: activation="relu’, 'sigmoid’, ’linear’
(default), ...
e Weight initialization method:

kernel_initializer="glorot _uniform’, bias_initializer="zeros’

(default), ...
o Example: Dense(10, activation="relu’,
kernel_initializer="he_normal’)

Official documentation:
https://keras.io/api/layers/core_layers/dense/

31/52

https://keras.io/api/layers/core_layers/dense/

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Creation

Architecture of a Multi-layer Neural Network

@ Model size: Defined by the number of layers and neurons in
each layer

How to choose model size?

@ Input and output layers: The number of neurons is
determined by the data shape.

o Hidden layers:

o Larger model = higher capacity — better at capturing
complex patterns

e Small model — underfitting, cannot capture complex
relationships

e Too large model with limited data — overfitting

e The optimal number of layers and neurons depends on the task
complexity and data size; usually selected experimentally.

32/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Creation

Architecture of a Multi-layer Neural Network

@ Shallow model — one hidden layer
o Better suited for simpler tasks — learns faster and generalizes
well
o Performs better on small datasets (large datasets may not help
much)
e Easier to understand and interpret
e Learns complex tasks slowly and may require many neurons

e Deep model — more (or many) hidden layers

e More suitable for complex tasks with large training datasets

o Capable of learning intricate patterns in the data

e Requires different training strategies and poses different
challenges

33/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Creation

Model Size and Its Effect on MLP Performance

Practical recommendations:

@ Start with a smaller model and gradually increase size as
needed.

@ Use validation data to monitor performance and avoid
overfitting.

e If overfitting occurs, apply techniques like regularization, early
stopping, or dropout.

@ Choose a good balance between width (neurons per layer) and
depth (number of layers).

@ For smaller datasets, prefer smaller models.

34/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Creation

Which Activation Functions to Use?

Which activation function for the output layer?
@ Regression task: linear (linear)
@ Binary classification: sigmoid (sigmoid)
@ Multi-class classification: softmax

Which activation function for hidden layers?

@ Hyperbolic tangent (tanh) — stable, symmetric; can suffer
from saturation; popular in recurrent models

@ In deep networks, ReLU is commonly used — fast and
effective, but asymmetric and limited in expressive power
(saturation risk still exists)

https://keras.io/api/layers/activations/

35/52

https://keras.io/api/layers/activations/

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Creation

Proper Initialization of Weights and Biases

Rule of thumb:

@ Weights and biases should be small, random, uniformly
distributed, and centered around zero.

Recommendations:

@ For ReLU: He initialization (HeUniform, HeNormal) —
maintains variance of neuron outputs

e For sigmoid/tanh/linear: Glorot (Xavier) initialization
(GlorotUniform, GlorotNormal)

Defaults in Keras:
@ Dense layer — kernel _initializer=’glorot_uniform’
@ Biases — initialized to zeros by default
https://keras.io/api/layers /initializers/

3652

https://keras.io/api/layers/initializers/

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Compilation

Model Compilation in Keras (model.compile)

@ Used to define how the model will learn.
Key arguments:
@ optimizer — the learning algorithm (e.g., "adam’, 'sgd’, or
Adam(learning_rate=0.001))
@ loss — loss function to be minimized during training

@ metrics — metrics for monitoring and evaluating model
performance (e.g., ['accuracy’], ['mae’])

Example:
model.compile(optimizer=’adam’,
loss=’binary_crossentropy’, metrics=[’accuracy’])

37/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Compilation

Which Loss Function to Use?

For regression tasks:
e MSE (loss="mean_squared_error’)

e Most commonly used loss function for regression
e Sensitive to outliers

e MAE (loss="mean_absolute_error’) — more robust to
outliers

@ Huber Loss (loss='huber’) — hybrid of MSE and MAE

https://keras.io/api/losses/

38/52

https://keras.io/api/losses/

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Compilation

Which Loss Function to Use?

For classification tasks:
e Binary Crossentropy (loss = ’binary_crossentropy’)

e Suitable for binary classification together with a sigmoid
activation in the output layer

o Categorical Crossentropy (loss =
'categorical_crossentropy’)

e Suitable for multi-class classification with softmax output
o Assumes one-hot-encoded labels

e Sparse Categorical Crossentropy (loss =
'sparse_categorical_crossentropy’)

e Similar to categorical crossentropy but uses integer class
indices instead of one-hot encoding

39/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Compilation

Which Metric to Use for Model Evaluation?

Classification:
@ Accuracy — proportion of correctly classified samples
e Binary classification: accuracy, binary_accuracy
o Multi-class classification: categorical_accuracy (for one-hot
labels), sparse_categorical_accuracy (for integer labels)
@ Other metrics for binary classification:
o AUC - area under the ROC curve; useful for imbalanced
datasets
e Precision, Recall, F1 — useful when minimizing false positives
or false negatives

Regression:
e mean_squared_error (MSE) — for typical regression tasks

e mean_absolute_error (MAE) — better when data contains
outliers

https://keras.io/api/metrics/

40/52

https://keras.io/api/metrics/

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Compilation

Which Metric to Use for Model Evaluation?

Dogs

false negatives. true negatives

images classified as having dogs

5 true pos.

5 true pos.
Recall =
total pos. 12 total dogs

Precision =

12 total dogs
Prevalence = ——
22 total images

try . + 7 true n
Accuracy = 5 true pos. ue neg.
22 total images

Source: https://en.wikipedia.org/wiki/Precision_and_recall, license CCO

41/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Compilation

Optimizers for Deep Neural Networks

@ Based on gradient descent; often use adaptive and local
learning rates

o SGD (Stochastic Gradient Descent) — basic optimizer, uses
mini-batches; stable

e Adam - currently the most popular; adaptive learning rate;
faster convergence

e RMSprop — suitable for sequential and online data

o AdaGrad, Adadelta, AdaMax, NAdam, FTRL, ...

e Each optimizer has additional hyperparameters (e.g., SGD:
learning_rate, momentum, nesterov)
In most cases, the default settings work well.

https://keras.io/api/optimizers/

42/52

https://keras.io/api/optimizers/

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Compilation

Choosing the Right Learning Rate

@ For SGD, setting the learning rate correctly is crucial.
@ It controls how quickly the model learns.
How to choose the learning rate?
@ Too small — slow learning, risk of getting stuck in a local
minimum
@ Too large — unstable learning, risk of overshooting the
minimum and oscillations
What helps?
@ Tuning the learning rate for your specific task
e Using momentum (momentum, nesterov)

e Using adaptive optimizers (Adam, RMSprop)

43 /52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Training (Fitting)

Training the Model in Keras (model.fit)

Key arguments:
@ X, y — input patterns and desired outputs
e batch_size — number of samples processed at once (e.g., 32)
@ epochs — number of passes through the entire dataset
e validation_data — validation set, e.g., (x_val, y_val)
e callbacks — functions called during training (e.g.,
EarlyStopping)
o shuffle=True — shuffle the data before each epoch

Example:
model.fit(x_train, y_train, batch size=32, epochs=10,
validation data=(x_val, y_val), shuffle=True)

Documentation:
https://keras.io/api/models/model_training_apis/#fit-method

44 /52

https://keras.io/api/models/model_training_apis/#fit-method

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Training (Fitting)

Other Key Hyperparameters for MLP

e Batch size — number of samples in one mini-batch

o Typically a power of 2 (8, 16, 32, 64, ...)

e Small batches: slower, less stable learning; often better
generalization

o Large batches (5124): faster training, higher memory usage,
increased risk of overfitting

o Recommendation: Use smaller batches for small datasets.
For large datasets, use the largest possible batch size that fits
in memory, while monitoring generalization.

@ Number of epochs

e Determined experimentally; use early stopping to avoid
overfitting

45 /52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Callbacks in Keras

Callbacks in Keras

Functions called during model training
— enable monitoring, model saving, early stopping, etc.

Most commonly used callbacks:

e EarlyStopping — stops training when validation performance
stops improving

@ ModelCheckpoint — saves the best model based on a chosen
metric

@ ReduceLROnPlateau — reduces the learning rate when a
metric has stopped improving

@ TensorBoard — logs training metrics for interactive
visualization

Usage: see example in notebook

Documentation:
https://keras.io/api/callbacks/

46 /52

https://keras.io/api/callbacks/

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Evaluation and Visualization

Keras Model — Evaluation, Prediction, Saving and
Loading

evaluate() — evaluate model performance on test data

@ Returns a tuple of loss and metrics values:
loss, accuracy = model.evaluate(x_test, y_test)

predict() — compute model outputs

@ Example for classification:
y-pred = model.predict(x_test)

save() — save the model to a file
@ model.save("model .keras")
load_model() — load a saved model

@ model = load_model("model.keras")

47/52

Neural Networks 3 - Neural Networks
Training Workflow in Keras: A Complete Example
Model Evaluation and Visualization

TensorBoard

@ A tool for visualizing training and evaluation of neural
networks.
@ Displays loss curves, metrics, model graph, weight
distributions, and more.
@ Enables real-time monitoring during training.
@ Supports comparison of multiple model runs.
Usage in Keras:

from keras.callbacks import TensorBoard

log_dir = "logs/fit/" +

tensorboard_callback = TensorBoard(log_dir=log_dir,...)
model.fit(..., callbacks=[tensorboard_callback,...])

Run from terminal:
tensorboard --logdir=logs/fit

Documentation: tensorflow.org/tensorboard i0/52

https://www.tensorflow.org/tensorboard

Neural Networks 3 - Neural Networks
Practice: Explore and Experiment

Practice: Explore and Experiment

keras_extended_example.ipynb

@ Experiment with how changing various hyperparameters
(architecture, optimizer, etc.) affects the learning process and
performance.

@ The notebook includes suggestions for what to try.

@ Explore the use of TensorBoard — optionally run it locally on
your own computer to visualize training progress.

Further exercises:
@ Train a MLP on other datasets from the scikit-learn dataset
repository (e.g., iris, diabetes, wine).

@ Try reproducing the full workflow from scratch — data
loading, preprocessing, model creation, compilation, training,
and evaluation.

49 /52

https://github.com/reitezuz/18NES2-2025/blob/main/week_03/keras_extended_example.ipynb
https://scikit-learn.org/stable/api/sklearn.datasets.html
https://scikit-learn.org/stable/api/sklearn.datasets.html

Neural Networks 3 - Neural Networks
Practice: Explore and Experiment

Practice: Explore and Experiment

Interactive MLP Playground — Simple Visual Demos
https://playground.tensorflow.org/
@ Interactive demo illustrating how a multilayer perceptron
learns.
e Includes five classification tasks (of increasing difficulty — the
spiral task is the most challenging).
@ You can configure network architecture and training
parameters.
@ Excellent visualizations: loss over time, weight signs and
magnitudes, neuron behavior.
@ Great for experimenting: how many layers and neurons are
needed for which task?
@ Challenge: can you train a model that solves the spiral task?
Note: We explored this tool in detail in the previous semester
(18NES1).

50 /52

https://playground.tensorflow.org/

Neural Networks 3 - Neural Networks
Graded Homework

1st Graded Homework: MLP Training in Keras (1 point)

Task:

@ Train and evaluate a MLP in Keras on a small dataset from
scikit-learn.

@ You can use the example from the lecture
(keras_extended_example.ipynb) as a template and
reproduce the full workflow: data loading, preprocessing,
model creation, compilation, training, and evaluation.

Choose one of the following datasets:

o Classification:

o load iris() — 3 classes, 4 features (very small, clean)

o load_wine() — 3 classes, 13 features (slightly richer)
@ Regression:

o load diabetes() — 10 features, small sample (classic toy
regression)

o fetch california housing() — 8 features, larger sample

51/52

https://scikit-learn.org/stable/datasets.html

Neural Networks 3 - Neural Networks
Graded Homework

1st Graded Homework: MLP Training in Keras (1 point)

Requirements

@ You can start from the provided example notebook and adapt
it to your chosen dataset.

@ Ensure correct preprocessing (e.g., StandardScaler); for
classification report accuracy (and optionally F1/confusion
matrix); for regression report MSE (and optionally MAE and
R?).

@ Show training curves (loss/metric) and briefly discuss
under/overfitting.

@ Experiment with at least three hyperparameter changes
(layers/units, activation, optimizer, learning rate, etc.).

@ Provide a short summary of your findings in the notebook.

Submission:

e Email your solution notebook (.ipynb) by Oct 14, 2025.

e Consultation (during lab or individually) required by Oct
17, 2025 to receive points. 52/52

	Review
	Training a Neural Network
	Python Libraries for Deep Learning
	Training Workflow in Keras: A Complete Example
	Preprocessing Training Data
	Setting Hyperparameters
	Model Creation
	Model Compilation
	Model Training (Fitting)
	Callbacks in Keras
	Model Evaluation and Visualization

	Practice: Explore and Experiment
	Graded Homework

