Neural Networks 2 - Neural Networks 18NES2 - Lecture 2, Winter semester 2025/26

Zuzana Petříčková

September 30, 2025

Neural Networks 2 - Neural Networks

- Review
- 2 A Brief History of Neural Networks
 - Neural Networks in the Course Neural Networks 2
- 3 Introduction to Artificial Neural Networks
 - Artificial Neurons
 - Multilayer Neural Networks
 - Training a Neural Network

What We Covered Last Time

- About the course Neural Networks 2
 - For details and credit requirements, see my website http://zuzka.petricek.net/vyuka_2025/NES2_2025/index.php
- Introduction to Artificial Intelligence and Machine Learning
- Fundamental Concepts of Machine Learning

Core Principle:

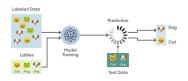
 The system "builds itself," meaning it learns from data (training dataset) or previous experiences.

Learning Paradigms:

- Supervised Learning
 - Training dataset in the form of [input, expected output]
- Unsupervised Learning (Self-Organization)
 - Training dataset in the form of [input]
- Reinforcement Learning
 - The program learns an optimal strategy based on previous experiences.

Supervised Learning - Task Types

• Classification: Predicting a discrete class (category)



 Regression: Predicting a numerical value (e.g., price, temperature, handwriting slant, etc.)

• Structured Data Learning (e.g., natural language sentences, molecular structures, etc.)

Typical Machine Learning Workflow

Data Preprocessing

- Transforming raw data into a format suitable for machine learning models.
- Example: Feature selection.

Model Selection and Development

- Choosing the right type of model (depends on the problem).
- Selecting a specific model within the chosen type (optimizing parameters).
- Model Evaluation Best performed on unseen (test) data.

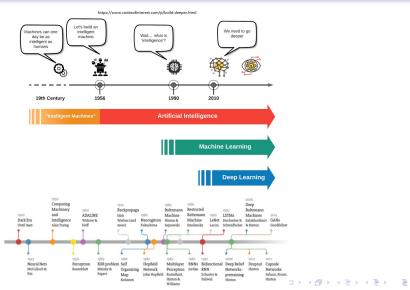
Typical Machine Learning Workflow

Practical Example: simple_example.ipynb

- A short illustration of a typical machine learning workflow
- Implementation of a simple Multilayer Perceptron (MLP) neural network using Keras

Neural Networks 2 - Introduction

- Review
- 2 A Brief History of Neural Networks
 - Neural Networks in the Course Neural Networks 2
- 3 Introduction to Artificial Neural Networks
 - Artificial Neurons
 - Multilayer Neural Networks
 - Training a Neural Network



Development Progressed in Waves:

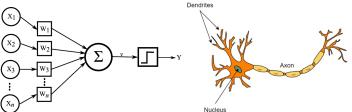
 Periods of rapid advancement and high expectations were followed by phases of disappointment and stagnation.

Key Time Periods:

- **1940 1960**: Theoretical foundations
- **1960 1970**: First boom the "single neuron era"
- 1970 1980: First "Al Winter" for neural networks
- 1980 1990: Second boom the era of "shallow" neural networks
- 1990 2000: Gradual stabilization of the field
- 2000 2010: Second "Al Winter" for neural networks
- 2010 present: Third boom the era of "deep" neural networks

Early Foundations (1940-1960)

- Attempts to model the functioning of biological neurons.
- 1943: First mathematical model of a neuron (W. McCulloch, W. Pitts) capable of representing logical and arithmetic functions.



- 1949: Mathematical concept of learning (D. Hebb) introduced the first learning algorithm for artificial neurons, modeling conditioned reflexes.
- 1951: First neurocomputer, SNARC (M. Minsky).

First Boom (1960-1970): The "Single Neuron Era"

- **1957: Perceptron** (F. Rosenblatt) first practical artificial neuron model with real-valued parameters and a functional learning algorithm. Sparked enormous enthusiasm.
- 1958: First successful neurocomputer, Mark I Perceptron (F. Rosenblatt, C. Wightman).
- 1962: Adaline and the sigmoid activation function (B. Widrow, M. Hoff).
- Rapid progress in neurocomputing in the 1960s, but soon faced fundamental limitations.

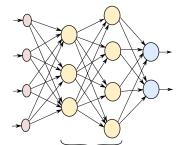
- 1969: Perceptrons (M. Minsky, S. Papert) demonstrated the limitations of perceptrons, showing they cannot model even basic logical functions.
- What if multiple neurons were connected into a network?
 - ightarrow A promising idea, but how would such a model be trained? Existing learning algorithms for perceptrons and linear neurons were insufficient.

1970 - 1980: First "Al Winter"

- Disillusionment due to unfulfilled expectations.
- Declining credibility of the field.
- Decreased funding and reduced interest in AI research.

Second Boom (1980 - 1990): The Era of "Shallow" Neural Networks

- Renewed interest in the field (John Hopfield, DARPA, etc.);
 introduction of the multilayer perceptron (MLP).
- 1986: Backpropagation Algorithm for training MLPs (P. Werbos and D. Rumelhart, with earlier work by G. Hinton and Y. LeCun).
 - A fundamental concept that remains in use today.



Second Boom (1980 - 1990): The Era of "Shallow" Neural Networks

Emergence of new neural network models composed of multiple neurons:

- Multilayer Perceptron (MLP)
- Kohonen Maps (T. Kohonen)
- Hopfield Networks (J. Hopfield)
- Radial Basis Function (RBF) Networks (J. Moody, C. Darken)
- Growing Neural Gas (GNG) Model (B. Fritzke)
- Support Vector Machines (SVMs) (V. Vapnik)
- Extreme Learning Machines (ELMs) (G.-B. Huang)
- Recurrent Neural Networks (RNNs) (e.g., Jeffrey Elman)
- Convolutional Neural Networks (CNNs) (Y. LeCun, Y. Bengio, et al.)

Stabilization Period (1990-2000)

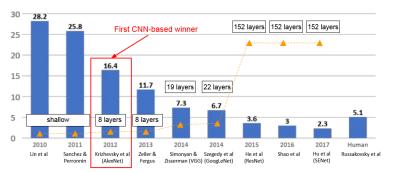
- dominant models: MLP (Multilayer Perceptron), RNN (Recurrent Neural Network), Kohonen Maps, and SVM
- Efforts to address learning challenges in neural networks:
 - Application of advanced optimization techniques.
 - Enhancing robustness, generalization, and mitigating overfitting
 - Learning strategies parallelization and computational efficiency.
- Attempts to train deeper neural networks:
 - Beyond MLP, CNNs (Convolutional Neural Networks) were also developed.
 - However, computational limitations (processing power and memory) imposed significant barriers.
 - The vanishing and exploding gradient problem emerged as a major challenge.

2010 – Present: The Third Boom — The Era of Deep Neural Networks

- What triggered the boom?
 - Advances in GPUs, cloud computing, and easy access to large datasets
 - Improvements in learning algorithms (e.g., Deep Learning, Y. LeCun, Y. Bengio, G. Hinton, 2015).
 - Breakthrough: CNNs won the ILSVRC competition (2012)
 - ImageNet Dataset: 16 million color images across 20,000 categories.

2010 – Present: The Third Boom — The Era of Deep Neural Networks

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



 $\label{linear_stanford_edu_2021/slides_2021/lecture_9.pdf} \mbox{ (Fei-Fei Li, Ranjay Krishna, Danfei Xu)}$

2010 – Present: The Third Boom — The Era of Deep Neural Networks

- Rapid emergence of new deep learning models and architectures:
 - Modern Recurrent Neural Networks (RNNs): LSTM (Hochreiter, Schmidhuber, 1997).
 - Generative Adversarial Networks (GANs) (I. Goodfellow, 2015).
 - First transformer-based generative language model: GPT-3 (2020, OpenAI), later followed by ChatGPT (2022).
 - First text-to-image model: Stable Diffusion (2022, CompVis).

Modern Deep Neural Network Architectures

Multilayer Perceptron (MLP, sometimes DNN)

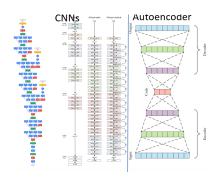
• A standard, universal model.

Convolutional Neural Networks (CNNs)

- Image and video processing.
- Classification, recognition, and segmentation tasks.

Autoencoders

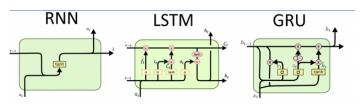
- Unsupervised learning.
- Feature extraction, data denoising, compression, and reconstruction.



Modern Deep Neural Network Architectures

Recurrent Neural Networks (RNNs)

- Used for sequential data analysis (time series, speech, text, handwriting).
 - Long Short-Term Memory Networks (LSTMs)
 - Effective for processing sequential data (e.g., speech and handwriting recognition).
 - Captures long-range dependencies.
 - Gated Recurrent Unit Networks (GRUs)
 - Efficient for modeling sequential data.
 - Applied in speech recognition and machine translation.



Modern Deep Neural Network Architectures

- Generative Adversarial Networks (GANs) Generate new data based on learned patterns.
- Deep Belief Networks (DBNs) Unsupervised generative models.
- Deep Q-Networks (DQNs) Used in reinforcement learning applications.
- Siamese Networks Applied in image recognition and object tracking; measures similarity between two inputs.
- Capsule Networks (CapsNets) Used for image recognition; models hierarchical relationships between object parts.
- Transformer Networks (BERT, GPT) Used for natural language processing (text classification, translation, etc.).

Neural Networks in the Course Neural Networks 2

This course is build on the previous one

What we covered in the course Neural Networks 1, 18NES1, Sommer semester 2024/25

- We covered basic "shallow" neural network models: the perceptron and single-layer models, Kohonen maps,...
- We also introduced basic deep models (MLP, convolutional neural networks)
- We tried to look inside neural network models and understand how they learn and work
- We also touched on theory (to a limited extent)
- We got familiar with Python libraries for deep learning (mainly Keras)

What we will cover in the course Neural Networks 2

Course Neural Networks 2, 18NES2/18YNES2, Winter Semester 2025/26

- We will briefly revisit some models already covered in Neural Networks 1 (MLP, convolutional neural networks)
- We will introduce new ones (advanced CNN variants, modern recurrent neural networks, autoencoders, generative models)
- Most likely, we will not reach more complex models (GANs, transformers, reinforcement learning, etc.)
- The emphasis will be on a practical, engineering-oriented perspective
- Theory will be covered only at a very basic level

What we will cover in the course Neural Networks 2

Course Neural Networks 2, 18NES2/18YNES2, Winter Semester 2025/26

- We will explore real-world applications through Python examples
- We will address different types of tasks and how to solve them with deep neural networks
- We will experiment and try things out :)

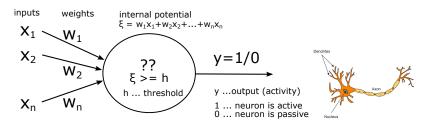
Would you like to learn how to use or understand even more modern and complex neural network models?

- You can learn more about deep neural networks in follow-up courses:
 - Machine Learning 2
 - Applications of Optimization Methods, and others

Neural Networks 2 - Introduction

- Review
- 2 A Brief History of Neural Networks
 - Neural Networks in the Course Neural Networks 2
- 3 Introduction to Artificial Neural Networks
 - Artificial Neurons
 - Multilayer Neural Networks
 - Training a Neural Network

Artificial Neuron - Inspired by Biological Neurons



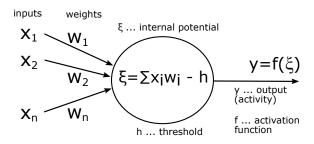
The First Artificial Neuron Model (McCulloch-Pitts, 1943):

- Inputs $x_1, x_2, ..., x_n \in \{0, 1\}$
- Each input has a weight $w_1, w_2, ..., w_n$.
- Internal potential: weighted sum:

$$\xi = w_1x_1 + w_2x_2 + \cdots + w_nx_n$$

• Threshold h: output (activity) is 1 if $\xi \geq h$, otherwise 0.

An Artificial Neuron - More general model

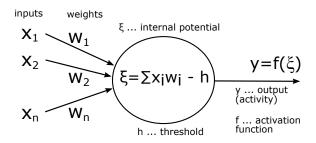


Neuron Parameters:

- Weight vector: $\vec{w} = (w_1, ..., w_n) \in \mathbb{R}^n$.
- Threshold (bias): $h \in \mathbb{R}$.
- Activation function: $f: \mathbb{R} \to \mathbb{R}$.
- Given an input $\vec{x} \in \mathbb{R}^n$, the neuron computes an output $y \in \mathbb{R}$ as:

$$y = f_{\vec{w},h}(\vec{x})$$

An Artificial Neuron — Original Definition



Neuron Output Calculation:

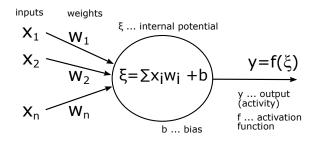
• Internal potential:

$$\xi = \sum_{i=1}^{n} w_i x_i - h = \vec{w} \cdot \vec{x}^T - h$$

Output:

$$y=f(\xi)$$

An Artificial Neuron — Modern Definition



Alternative Definition: Threshold $h \rightarrow Bias b$

Internal potential:

$$\xi = \sum_{i=1}^{n} w_i x_i + b = \vec{w} \cdot \vec{x}^T + b$$

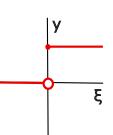
• Output: $y = f(\xi)$

An Artificial Neuron - About the Activation Function

 The historical Perceptron model utilized a step activation function.

Step Activation Function:

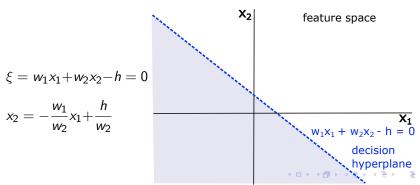
- If $\sum_{i=1}^{n} w_i x_i \ge h$, i.e., $\xi = \sum_{i=1}^{n} w_i x_i h \ge 0$ then the neuron is **active** $(f(\xi) = 1)$.
- If $\sum_{i=1}^{n} w_i x_i < h$, i.e., $\xi = \sum_{i=1}^{n} w_i x_i h < 0$ then the neuron is **passive** $(f(\xi) = 0)$.
- \rightarrow The perceptron can be used as a $\mbox{\bf linear classifier},$ separating patterns into two classes



Perceptron as a linear classificator

Geometric Interpretation of an Artificial Neuron

- The neuron's inputs can be represented as points in an *n*-dimensional Euclidean space (input/feature space).
- Setting the neuron's internal potential to $\xi=0$ results in the equation of a **decision hyperplane** (decision boundary) .



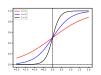
And what about other activation functions?

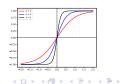
Step Activation Function

- simple and intuitive (close to the biological model)
- but not differentiable → cannot be effectively trained with gradient-based methods
- therefore rarely used in larger neural networks
- → Continuos and smooth replacements:

Sigmoid

Hyperbolic Tangent

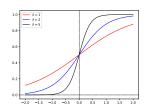




Continuous alernatives to the step function

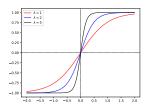
Logistic Sigmoid

- $f(\xi) = \frac{1}{1 + e^{-\lambda \xi}}$... logsig
- maps input to (0,1) (probabilistic interpretation)



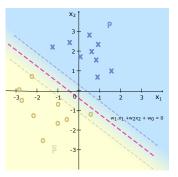
Hyperbolic Tangent

- $f(\xi) = \frac{1-e^{-2\lambda\xi}}{1+e^{-2\lambda\xi}}$... tanh
- similar to sigmoid, but symmetric around zero
- outputs in (-1,1)



Sigmoid and Hyperbolic Tangent

Geometric Interpretation:



... Linear classification task

• With a sigmoidal activation function, the neuron's output can be directly interpreted as the **probability** that the input belongs to a given class.

Usage of Sigmoid and Hyperbolic Tangent

Sigmoid function

- historically used in hidden layers (smooth replacement of step function), but suffers from vanishing gradients
- nowadays mainly in the output layer for binary classification
- outputs can be interpreted as probabilities

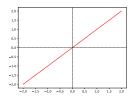
Hyperbolic tangent

- often used in hidden layers in older architectures, but it also suffers from vanishing gradients
- ullet centered around zero o better gradient flow than sigmoid
- still used in some RNN architectures

And what about other activation functions?

Identity function

- $f(\xi) = \xi$... linear neuron
- output: $y = \xi = \sum_{i=1}^{n} w_i x_i + b$
- \rightarrow during training we search for \vec{w} such that: $\vec{d} = \vec{y}$, i.e. $\vec{d} = X\vec{w}$
- this corresponds to the problem of linear regression



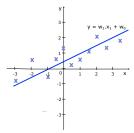
Usage:

- very suitable in the output layer for regression tasks
- not very useful for classification tasks and in hidden layers

Linear Neuron - Geometric Interpretation

For a single input feature:

- Neuron output: $y = w_1x + b$
- (x_k, d_k) are points in the plane
- We fit the points with a straight line:



In general: We fit the points with a hyperplane

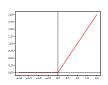
$$y = w_1x_1 + \cdots + w_nx_n + b$$

• assuming a linear relationship between input variables

And what about other activation functions?

Rectified Linear Unit (ReLU)

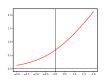
•
$$f(\xi) = \max(0, \xi) = \begin{cases} \xi, & \text{for } \xi > 0 \\ 0, & \text{for } \xi \le 0 \end{cases}$$



- Not differentiable everywhere, but computationally efficient
- Widely used in hidden layers of deep neural networks
 Softplus (Smooth Alternative to ReLU)

•
$$f(\xi) = \ln(1 + e^{\xi})$$

- ullet Behaves like ReLU for large ξ
- Behaves like a sigmoid function for small ξ
- Less commonly used than ReLU

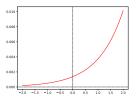


And what about other activation functions?

Softmax

- A specialized activation function for multi-class classification
- A generalization of the argmax function, converting numerical values into probabilities
- $f: \mathbb{R}^n \to \mathbb{R}^n$,

$$f(x_i) = \frac{e^{x_i}}{\sum_{j=1}^N e^{x_j}}$$



ightarrow Suitable only for the output layer in classification tasks

Neural Networks 2 - Week 2

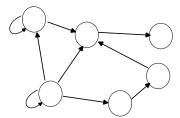
- Review
- 2 A Brief History of Neural Networks
 - Neural Networks in the Course Neural Networks 2
- 3 Introduction to Artificial Neural Networks
 - Artificial Neurons
 - Multilayer Neural Networks
 - Training a Neural Network

Neural Network

- A neural network consists of neurons that are interconnected by edges.
- The output of one neuron can serve as an input to one or more other neurons.

Neural Network Architecture

 Represented as a directed graph, where neurons correspond to nodes and connections between neurons correspond to edges.



Neural Network

Output Neurons

 Their outputs together form the final output of the neural network.

Input Neurons

• Their inputs are the input patterns (examples).

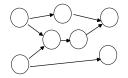
Network Output (Response)

• Defined by the activities (outputs) of the output neurons.

Neural Network

Neural Network Architecture (Topology)

- Cyclic / recurrent networks: allow feedback connections.
- Acyclic / feedforward networks: all connections go in the same direction (i.e., the graph can be topologically ordered).



 Hierarchical / layered networks: special case of feedforward, organized into layers, with connections only between neurons in consecutive layers.

Multi-Layer Neural Network (Multi-Layer Perceptron, MLP, 1980)

- Hierarchical sequential architecture: neurons are arranged in layers
- Dense (fully connected) layers: every neuron in one layer is connected to every neuron in the next layer

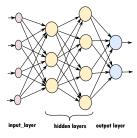
Special input layer:

 corresponds to the inputs of the neural network

Output layer:

 the output (response) of the network corresponds to the activities of the output neurons

The remaining layers are **hidden layers**.



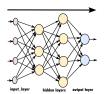
Multi-Layer Neural Network (Multi-Layer Perceptron)

How to represent the sequential NN model?

- A sequence (list) of layers $L_0, ..., L_{max}$ (see the Keras example)
- Each layer is represented by a tensor of weights (and biases)

How to compute the model output (response):

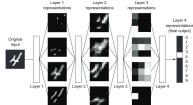
- by performing a forward pass
- we process one layer at a time, starting from the input layer and going toward the output:
 - present the input tensor to the current layer
 - compute the layer's output
 - use this output as the input to the next layer



Neural Network Architecture (Topology)

- Shallow model one hidden layer
- Deep model more (or many) hidden layers
 - Automatically extracts features from data, reducing the need for extensive preprocessing.

Convolutional neural network



F. Chollet: Deep Learning with Python, Fig. 1.6

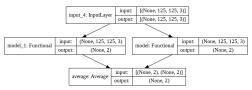
イロト イ御ト イミト イミト

I. Goodfellow, Y. Bengio, and A. Courville: Deep Learning, 2016, Figure 1.5

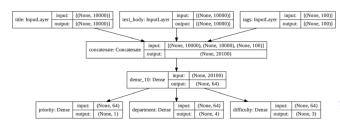
Neural Network Architecture (Topology)

• For modern deep models, a simple sequential (layered) architecture is often not sufficient, for example:

Ensemble model



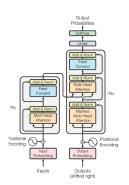
Model with multiple inputs and outputs



Neural Network Architecture (Topology)

• Modern deep networks often have complex topologies:

The VGG-16 CNN model (F. Chollet: Deep Learning with Python, Fig. 8.15)



The original Transformer architecture (Vaswani et al., 2017)

Inception V1 (Szegedy et al., 2014)

Training a Neural Network (Supervised Learning)

Data used for training the model

- Training set T
 - a set of N training samples $T = (X, D) = \{(x_1, d_1), ..., (x_N, d_N)\}$
 - X ... input data (tensor), D ... desired output (tensor)
- Training sample (pattern) (x_i, d_i)
 - x_i ... input pattern (tensor)
 - d_i ... target / expected / desired output
- Examples of input data tensors:
 - vector data 2D tensor (samples, features)
 - time series and sequential data 3D tensor (samples, timesteps, features)
 - images 4D tensor (samples, height, width, channels)
 - video 5D tensor (samples, frames, height, width, channels)

Training a Neural Network (Supervised Learning)

The number and shape of output features depend on the task:

- Regression:
 output tensor shape (samples, 1) or (samples, output features)
 e.g. prediction of values (stock price, temperature,...)
- Classification: output tensor shape (samples, number of classes) e.g. binary classification \rightarrow shape (samples, 1) multiclass classification \rightarrow shape (samples, number of classes)
- Sequential data:
 output tensor shape (samples, timesteps, output features)
 e.g. sentence translation → shape (samples, output sequence length, vocabulary size)
- images, video, ...

Training a Layered Neural Network (MLP Model)

 Let us now focus on the classical Multi-Layer Neural Network model with n inputs and m output neurons:

Training data

- Training set T = (X, D)
 - X ... input patterns: 2D tensor of shape (N, n), where N is the number of training samples, n is the number of input features
 - D ... desired outputs: 2D tensor of shape (N, m), where m is the number of output features
- Training sample (pattern) $(\vec{x_i}, \vec{d_i})$
 - $\vec{x_i}$... vector of length n (input pattern)
 - $\vec{d_i}$... vector of length m (target / expected output)

Learning objective:

 Adjust the weights (and biases) of all neurons in the network so that the actual output Y matches the desired output D.

Training a Layered Neural Network (MLP Model)

Basic principle (simplified)

- Randomly initialize the model parameters (weights and biases of all neurons).
- 2 Repeat the training cycle:
 - prepare a batch of training inputs X and corresponding targets
 - ullet compute the actual output (prediction) of the model Y
 - calculate the model error (difference between Y and D)
 - update weights and biases to make the error slightly smaller
- → gradient descent method (or its variants)
 - the need of continuous and differenciable activation functions