Neural Networks 2 - Sequences and RNNs 18NES2 - Week 9, Winter semester 2025/26

Zuzana Petříčková

November 25, 2025

What We Covered Last Time

Practical examples of CNN design patterns

- residual connections, bottleneck blocks, depthwise separable convolutions
- training a small Xception-like model from scratch

Applications of CNNs

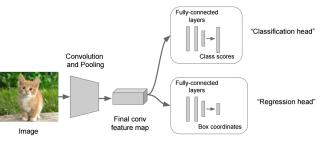
- Semantic segmentation + encoder-decoder architecture + practical example
- Object detection

This Week

- Applications of Convolutional Neural Networks
 - Object Detection
 - Instance segmentation
 - Autoencoders
 - Other Applications
- Sequential data
 - Tasks
 - Time Series Forecating
- 3 Recurrent Neural Network (RNN)
 - Vanilla RNN
- Graded Homework

Applications of Convolutional Neural Networks

- The classification head of a neural network can be replaced by a different head to solve a different task on the same (or similar) data
 - Different classification tasks classification head
 - Regression tasks regression head
 - Semantic segmentation encoder-decoder architeture
 - . . .



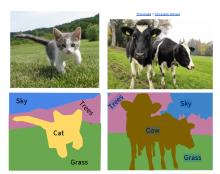
Applications of Convolutional Neural Networks

Other Computer Vision Tasks Semantic Classification Instance Object Segmentation + Localization Segmentation Detection GRASS, CAT, DOG, DOG, CAT CAT DOG, DOG, CAT TREE, SKY Multiple Object No objects, just pixels Single Object This image is CC0 public domain

Source: https://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

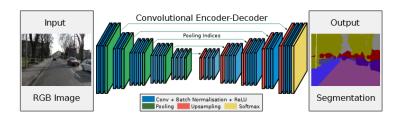
Encoder-Decoder for Semantic Segmentation

- Goal: assign a class label to each pixel in the image.
- Each pixel belongs to one of the predefined object categories.
- Typical architecture: encoder-decoder CNN (e.g., SegNet, U-Net).

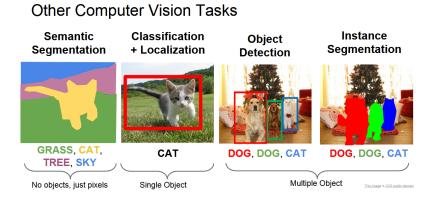


Encoder-Decoder for Semantic Segmentation

- Encoder: classic CNN that extracts multi-scale features (downsampling using greater stride rather than pooling).
- Latent space: compact feature representation.
- Decoder: reconstructs spatial resolution using upsampling:
 - Transposed convolutions (a.k.a. deconvolutions)
 - Unpooling (less common in segmentation)



Applications of Convolutional Neural Networks

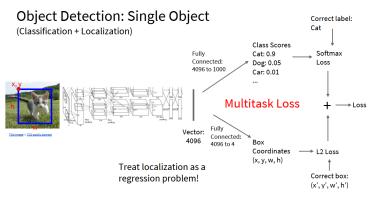


Source: https://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

CNNs and Object Detection

Single object – two heads:

- Classification head predicts the object class.
- Regression head predicts the bounding box coordinates.



CNNs and Multi-Object Detection

Sources: https://matlabacademy.mathworks.com

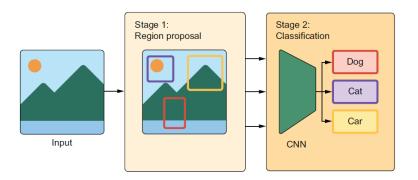
Triantafyllidou, D. et al.: A Fast Deep Convolutional Neural Network for Face

Detection in Big Visual Data.

R-CNN: Region-based Convolutional Neural Network

Two-stage detector

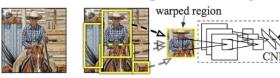
- Extract candidate regions (ROIs, regions of interest)
- 2 Run classification on each region



R-CNN: Region-based Convolutional Neural Network

- The input image is first divided into candidate regions (ROIs) using selective search heuristics.
- Each region is resized to a fixed size and passed through a pretrained CNN (e.g., VGG-16 trained on ImageNet in the original paper).
- Two heads are used:
 - a classifier (originally SVM) to classify each region,
 - a regressor to refine the bounding box.

R-CNN: Regions with CNN features



1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

Classify regions

tvmonitor? no.

aeroplane? no.

person? yes.

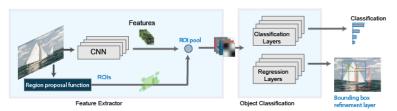
Fast R-CNN and Faster R-CNN

The original R-CNN

 Very computationally expensive (many independent forward passes for each image)

Fast R-CNN

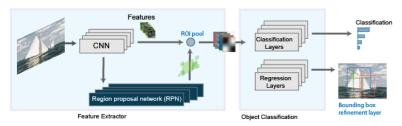
- Speeds up computation by sharing convolutional features between all regions of interest (ROIs).
- The whole image is passed through a CNN base once; ROIs are pooled from the feature map.



Fast R-CNN and Faster R-CNN

Faster R-CNN

- Introduces a Region Proposal Network (RPN) that learns to propose ROIs directly inside the model.
- Replaces the slow selective search step.



Source: https://www.mathworks.com/help/vision/ug/getting-started-with-r-cnn-fast-r-cnn-and-faster-r-cnn.html

One-Stage Detectors: YOLO, RetinaNET, after 2015

Key idea:

 Predict bounding boxes and classes in a single forward pass, without a separate region proposal stage.

YOLO (You Only Look Once)

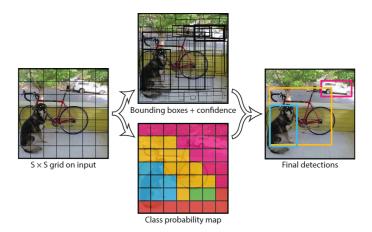
- Divides the image into a grid and predicts bounding boxes + class probabilities for each cell.
- Extremely fast suitable for real-time applications.

SSD (Single Shot MultiBox Detector)

- Uses multiple feature maps at different scales to detect objects of various sizes.
- Also a one-stage detector, balancing accuracy and speed.

Modern detectors (e.g. YOLOv5/8, RetinaNet, DETR) further improve speed–accuracy trade-offs.

YOLO model



Source: Redmon et al. You only look once: unified, real-time object detection, 2015

Practical example: Object detection

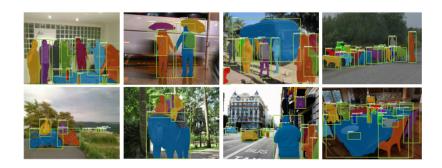
Original source of the example

- Cholett: Deep learning with Python coco_object_detection.ipynb
 - Two examples:
 - Training a YOLO model from scratch on the COCO dataset
 - Using a pretrained RetinaNet detector

COCO (Common Objects in Context)

Dataset designed for object detection, segmentation, and image captioning

CNN and Instance Segmentation

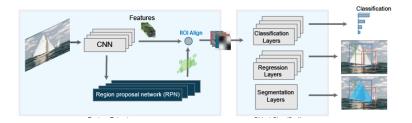


Source: He et al., Mask R-CNN, 2017, Figure 2,

https://arxiv.org/abs/1703.06870

CNN and Instance Segmentation

 Mask R-CNN: an extension of Faster R-CNN that adds a parallel head to predict a pixel-level segmentation mask for each detected instance.



Source: https://www.mathworks.com/help/vision/ug/getting-started-with-mask-r-cnn-for-instance-segmentation.html

CNN and Human Pose Estimation

• Mask R-CNN: can also be extended to predict human keypoints (e.g., COCO Keypoints dataset).

Source: He et al., Mask R-CNN, 2017, Figure 7,

https://arxiv.org/abs/1703.06870

Practical Example: Instance Segmentation with SAM

Segment Anything Model (SAM, Meta AI, 2023)

- Zero-shot segmentation model no retraining needed.
- Predicts object masks based on:
 - points,
 - bounding boxes,
 - or automatically (mask proposal mode).
- Works on any domain without fine-tuning.

instance_segmentation_using_a_pretrained_model.ipynb

Practical Example: Instance Segmentation with SAM

Segment Anything Model (SAM, Meta AI, 2023)

- Predicts object masks based on:
 - points,
 - bounding boxes,
 - or automatically (mask proposal mode).

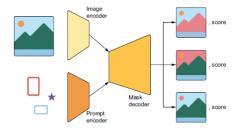
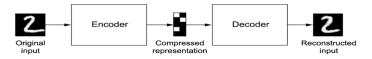


Image source: F. Chollet, Deep Learning with Python, Fig. 11.8

Applications of Convolutional Neural Networks

Autoencoders



F. Chollet: Deep Learning with Python, Fig. 12.4

Variational Autoencoders

- Encode data as a probability distribution
- Capable of generating new data samples or creating interpolations

F. Chollet: Deep learning v jazvku Python, obr. 5.7

Applications of Convolutional Neural Networks

Processing 2D Images

- Image classification classification head
- Regression tasks regression head
- Object detection detection head
- Image segmentation segmentation head (encoder-decoder architecture)
- Image restoration, style transfer, image generation autoencoder architecture
- Image captioning, pose estimation, facial feature detection, image similarity evaluation, . . .

Other Data Types

- Video analysis (3D convolutions) action recognition (e.g., in sports recordings)
- Sequential data (1D convolutions) time series, audio data, limited use for natural language

Advantages and Disadvantages of Convolutional Neural Networks

- Well-suited for grid-like data (e.g., images)
- Invariance to translation, scale, and color changes
- Robust to noise in the data
- Computationally intensive training; requires large datasets and GPUs
- Risk of overfitting, especially with small datasets
- Vulnerable to adversarial examples still an open problem (small invisible perturbations causing incorrect classifications) https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

This Week

- 1 Applications of Convolutional Neural Networks
 - Object Detection
 - Instance segmentation
 - Autoencoders
 - Other Applications
- Sequential data
 - Tasks
 - Time Series Forecating
- Recurrent Neural Network (RNN)
 - Vanilla RNN
- 4 Graded Homework

Sequential Data

Example tasks:

• Where will a thrown ball be in the next moment?

Complete the sentence:

• Who is speaking?

Sequential Data

Time series

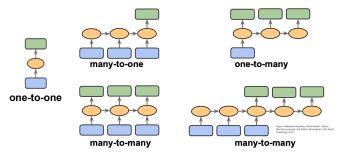
- Different granularity: daily stock prices, hourly electricity consumption, weekly store sales, ...
- Different dynamics: website traffic, credit-card transactions, seismic activity, weather evolution, ...

Sequential data are not only time series:

- Audio: speech recognition, speaker identification, emotion detection, acoustic localization, music analysis
- Text: sentiment analysis, machine translation, next-word prediction
- Video: action recognition, object tracking, trajectory prediction, video captioning
- Biological signals: DNA sequence analysis, heart-rate monitoring (ECG), ...

Types of Tasks on Sequential Data

- one-to-one standard classification
- many-to-one sentiment analysis, action recognition
- one-to-many image captioning, sentence tagging, music generation
- many-to-many (direct /delayed) object tracking, machine translation,



Time Series

Time series

- Sequential data with typical dynamics:
 - periodicity (daily, annual, ...)
 - trends in time: regular regime, sudden spikes,...

Typical tasks:

- Forecasting predict the next value (many-to-one) or the next sequence (many-to-many)
- Classification e.g., bot vs. human web visitor, heart-attack risk from ECG
- Event detection seismic activity, keyword spotting ("OK Google")
- Anomaly detection unusual behavior in network traffic
 - usually solved with unsupervised learning: clustering, autoencoders

Example: Time Series Forecasting

Example: Jena Climate Dataset time_series_jena.ipynb

- Meteorological data recorded at the Max Planck Institute in Jena (Germany), years 2009–2016.
- 15 features (timestamp, temperature, pressure, humidity, wind speed/direction, ...)
- \bullet Measurements taken every 10 minutes roughly \sim 400,000 samples.

Task

- Predict the temperature 24 hours into the future using the previous 5 days of data.
- Use 14 input features (timestamp omitted).
- We downsample to hourly measurements \rightarrow 24 \times 5 = 120 time steps.
- Each training example has shape 120 × 14, and the output is
 a single value (temperature in 24 hours).

Example: Time Series Forecasting

Loading and preparing the data

- Example: reading the CSV file and creating time-series datasets using Keras utilities.
- **Important:** Validation and test sets must follow the training set **in time**.
 - Common mistake: randomly shuffling data before splitting into train/val/test.
 - Only the training samples may be shuffled.

Baseline level

- Naive forecast: "The temperature in 24 hours will be the same as now."
- Baseline: $MAE_{test} = 2.62^{\circ}C$ surprisingly strong for this dataset.

Example: Time Series Forecasting

Solution using an MLP

- The MAE remains close to the baseline.
- Why is it not better?
 - The MLP sees all 120×14 numbers at once \rightarrow it must "find a needle in a haystack".
 - It has no notion of temporal structure.

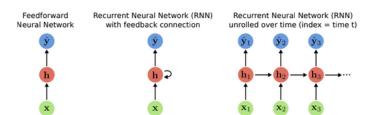
Solution using a 1D CNN

- Uses 1D convolution along the time axis.
- Performs even worse than the baseline.
- Why?
 - Time series are not shift-invariant.
 - The order matters recent history is more important than distant history.

The MLP and CNN models fail. What to do next?

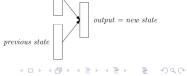
 Try a model dedicated to sequential data: a recurrent neural network (RNN)

Recurrent Neural Network (RNN)



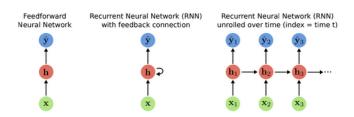
Recurrent NN model = a model with cycles

- Idea: Neurons maintain an internal state (memory).
- Output depends not only on the current input but also on the previous state.
- RNN neurons are sometimes called *memory cells*.



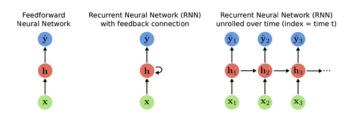
input

Vanilla (Elman) RNN



- The neuron has a hidden state: $h_t = f_h(h_{t-1}, x_t)$
- Output: $y_t = f_y(h_t)$
- The model processes the whole input sequence:
 - of arbitrary length,
 - can be "unrolled" over time (right figure),
 - functions f_h and f_y share parameters across time steps.
- The hidden state is reset for each new input sequence.

Vanilla (Elman) RNN: Equations



• Hidden state:

$$h_t = \tanh(W_h h_{t-1} + W_x x_t + b_h)$$

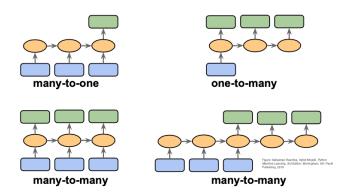
Output:

$$y_t = W_y h_t + b_y$$

• Parameters W, b stay the same for all time steps.

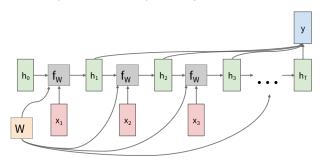
Vanilla RNN – unrolled

 Examples of unrolled architecture for different sequence-to-sequence mappings:



Vanilla RNN - unrolled

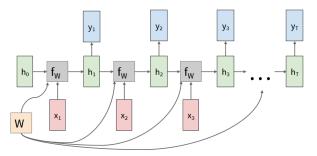
RNN: Computational Graph: Many to One



- RNN unrolled in time can be viewed as a deep feed-forward neural network
- The main difference: unrolled units share parameters (weights and biases)

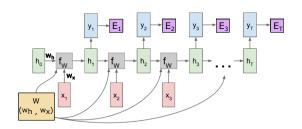
Vanilla RNN - unrolled

RNN: Computational Graph: Many to Many



Source: S. Raschka: Introduction to Recurrent Neural Networks, https://sebastianraschka.com/blog/2021/dl-course.html

Backpropagation Through Time (BPTT)



Source: S. Raschka: Introduction to Recurrent Neural Networks, 2021

- An extension of standard Backpropagation for RNN
- Shown for a many-to-many architecture.
- Gradients are backpropagated through all time steps at once (for a sequence or batch of sequences).

Practical examples

Next week ...

Practical example: RNN Layers in Keras

RNN_layers.ipynb

Practical example: Jena Climate Dataset

time_series_jena.ipynb

7th Graded Homework: Time Series Prediction

Goal: Build and compare several NN models for **multistep forecasting** on the **Jena Climate** dataset.

Task:

- Use meteorological data sampled every 10 minutes.
- Predict the next 6 future steps (next hour) of:
 - temperature,
 - atmospheric pressure ("p (mbar)")
- Input: last 3 days of data (432 time steps × selected features).

Start from the example notebooks:

- time_series_jena.ipynb
- RNN_layers.ipynb

7th Graded Homework: Suggested Workflow

Hints

 When modifiing the code of time_series_jena.ipynb, think about input shape (batch, 432, features) and output shape (batch, 6, 2), and how to adapt the loss function accordingly

Models to compare:

- Model 1: Simple baseline (naive forecast: "next hour = keep last value").
- Model 2: MLP or 1D-CNN baseline
- Model 3: Simple recurrent model (LSTM or GRU).
- Models 4–?: Variants of an improved recurrent model (e.g., stacked LSTM/GRU, recurrent dropout, gradient clipping, layer normalization, bidirectional RNN).

7th Graded Homework: Requirements

Include in your notebook:

- Training curves (MAE, RMSE).
- Final metrics on the test set.
- Visualization of the predictions.
- Short discussion: Which architecture performs best and why?

Submission

- Submit the notebook by Dec 8, 2025.
- Consultation required by Dec 12, 2025 to receive points (short discussion after lab or individually).
- Points: 1-2
 - \bullet +1 point for the four required models and evaluation
 - ullet +1 point for discussing more variants of extended RNNs