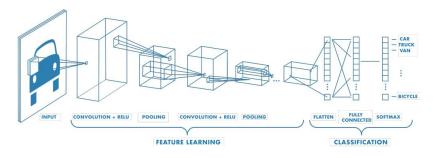
Neural Networks 2 - Convolutional Neural Networks

18NES2 - Lecture 5, Winter semester 2025/26

Zuzana Petříčková

October 21, 2025

Today's Lecture: Introduction to Convolutional Neural Networks



Source:

https://matlabacademy.mathworks.com/details/deep-learning-onramp/deeplearning

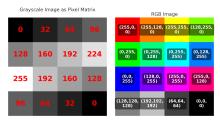
Introduction to Convolutional Neural Networks

Today's Lecture:

- Motivating example: bird species classification
- Convolution operation intuition, purpose, and parameters
- Convolutional neural network architecture (layers, filters, pooling)
- Classic CNN architecture and Fashion MNIST example

Reminder: Digital Image Representation

- A digital image is a matrix (tensor) of pixels.
- Each pixel (short for "picture element") describes the color at a specific position in the image.



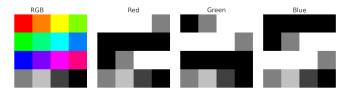
Grayscale Image

- Each pixel is a single value indicating brightness (e.g., 0 = black, 255 = white).
- For machine learning, pixel values are usually normalized to the interval [0,1].

Reminder: Digital Image Representation

Color Image (RGB)

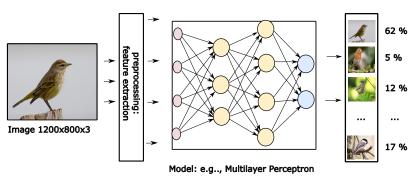
- Each pixel consists of three components: R (red), G (green),
 B (blue).
- The image is represented as a 3D tensor of shape (height \times width \times 3).
- These components are called color channels.



Example: convolution_introduction.ipynb

Motivating Example: Image Classification Bird Species Recognition

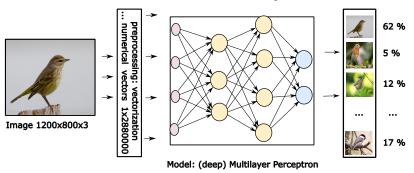
Classical Machine Learning Approach



Thorough preprocessing of the data: Feature Extraction

- edge detection, LBP histograms, etc.
- information loss; requires careful feature design

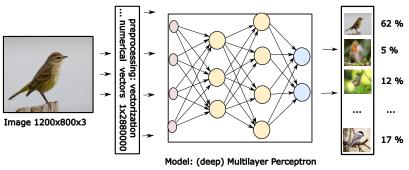
What if we train a neural network directly on the data?



Deep Learning Principle

- let the model learn useful features from the data
- preprocess the data just slightly (e.g., vectorization, normalization)

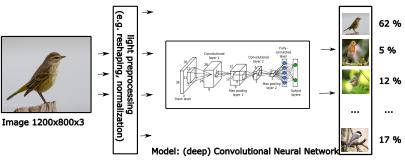
What if we train a neural network directly on the data?



Drawbacks of the classical approach (fully connected layers only):

- high number of features
- loss of spatial relationships between pixels
- it is difficult to train the model effectively

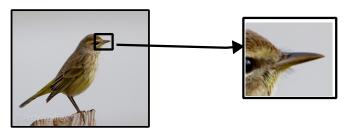
How could we improve this?



Convolutional Neural Network (CNN):

- a neural network with convolutional layers
- takes spatial arrangement of pixels into account
- fewer parameters, easier to train compared to fully connected networks

Patterns in data: for example, beak shape

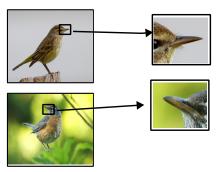


Let's create a beak detector:

 a simple model (e.g., a single-layer neural network) that detects beaks in images

But: the beak may appear in different locations within the image

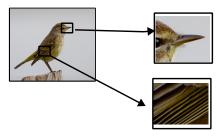
Patterns in data: for example, beak shape



The beak may appear in different image regions

- the detector should find a beak in any image and at any location
 - ightarrow the detector must slide over the input image

There are multiple patterns in the data (e.g., beak, feather, eye):



The idea:

- create a set of detectors for different features (patterns)
- detectors should recognize features anywhere in the image
 - ightarrow detectors slide over the image
- these detectors form the initial layers of a convolutional neural network

Convolutional Neural Network

A neural network that includes convolutional layers

Convolutional Layer

- Consists of a set of filters (also called kernels or detectors)
- Each filter performs a convolution operation over the input image
- The output of the convolution (a feature map) is passed to the next layer

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Image 6x6 (black and white)

Convolutional Layer:

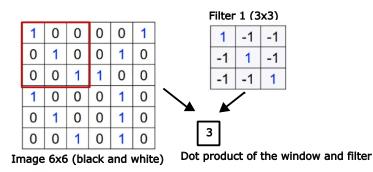
1	-1	-1	
-1	1	-1	Filter 1 (3x3)
-1	-1	1	

-1	1	-1	
-1	1	-1	Filter 2 (3x3)
-1	1	-1	

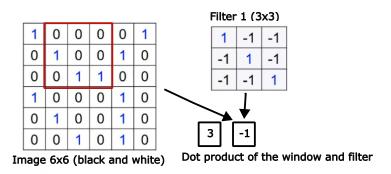
. . .

- The convolutional layer contains several filters
- Each filter detects a pattern (feature) of size 3×3 pixels (e.g., diagonal edge, vertical edge, etc.)

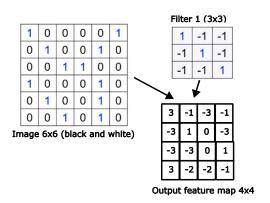
Example source: Petr Doležel – Convolutional Neural Network,



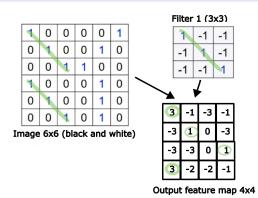
• We compute the dot product: $y = \sum_{i=1}^{9} w_i x_i + b$ (for flattened matrices)



Move the sliding window and compute another dot product

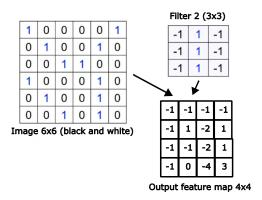


- By sliding the window over the image, we apply the filter to the entire input
- The result is a new 2 \times 2 tensor a **feature map**

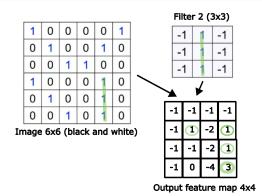


Feature Map

- Indicates where (and how strongly) the pattern represented by the filter appears in the input image
- Example: diagonal edge filter



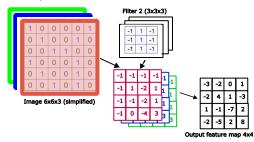
• We can similarly apply a second filter



Second Feature Map

- Indicates where (and how strongly) the pattern represented by the second filter appears in the input image
- Example: vertical edge filter

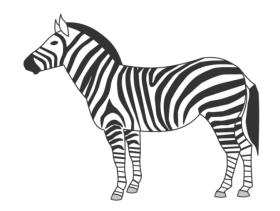
Color Image: 3 input channels - R, G, B



- Each filter has weights for all input channels (R, G, B)
- Computation: convolution is performed separately on each channel and the results are summed
- Each filter produces one aggregated output feature map
- The number of filters defines the number of output channels

Convolution Operation

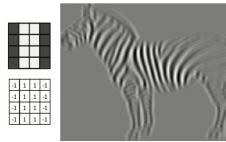
Example: Zebra



Source:

Convolution Operation

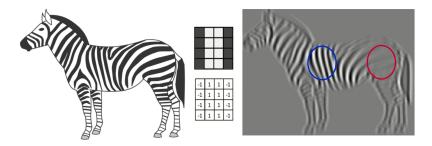
Example: Zebra



• Output after applying the vertical stripe filter

Convolution Operation

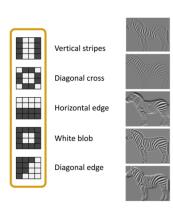
Example: Zebra



 Clearly shows where the pattern is strongly present and where it is not

Convolution Operation

Example: Zebra

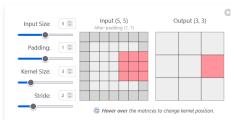


• Examples of other filters and their resulting feature maps

Convolution Operation Parameters

- Dimensions of the input image
- Padding how borders are handled
- Filter size
- Stride the step used to move the filter across the image

Understanding Hyperparameters



Great interactive visualization:

Convolution Parameters: Padding and Stride

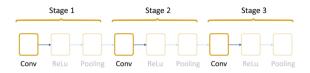
Padding

- Adds extra border pixels around the input image
- Common options:
 - Valid no padding (output shrinks)
 - Same padding added to keep output size the same as input
- Helps preserve spatial size and improve edge detection

Stride

- Controls how far the filter moves at each step
- **Stride** = 1: typical setting, dense coverage
- Stride ¿ 1: reduces output size, performs downsampling

Tip: Try out different values in CNN Explainer

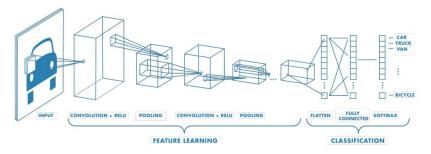


Core idea: stack convolutional layers (or blocks) on top of each other

- The first convolutional layer detects simple features (e.g., edges, blobs)
- Each following layer extracts higher-level features

Hierarchical structure of features:

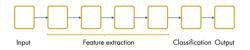
 $\mathsf{edges} \to \mathsf{shapes} \to \mathsf{object} \; \mathsf{parts} \to \mathsf{whole} \; \mathsf{objects}$



Main components of a CNN:

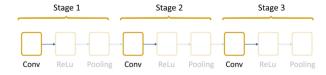
- CNN base Convolutional blocks for feature extraction
- Flattening layer converts the feature maps into a 1D vector
- Head Fully connected neural network for classification

Image source: https:



Typical structure of a convolutional block:

- Convolutional layer
- Nonlinear activation function (e.g., ReLU)
- Pooling layer



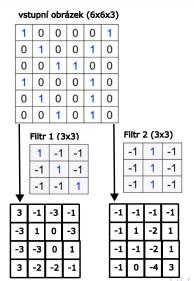
Pooling (Subsampling) Layer

- Reduces spatial resolution while preserving most of the relevant information
- A sliding window (e.g., 2×2) moves across the feature map, often with stride = 2
- Common operations: MAX (max pooling), AVERAGE (average pooling); no weights involved

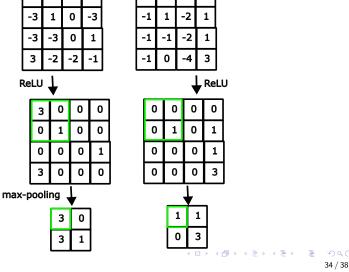
Why pooling?

- Condenses the information stored in the feature map
- Keeps track of where and how strongly a feature occurs
- Reduces the data size (e.g., $2 \times 2 \rightarrow 1$ value = 75% reduction)

Convolutional Block – Example: Convolutional Layer



Convolutional Block – Example: Pooling Layer



Convolutional Block

Why not just stack convolutional layers without pooling?

- The number of parameters grows with each added layer
- Image size stays (almost) the same, especially with "same" padding
 - \Rightarrow the size of the feature maps (and computation) keeps growing

Pooling layer:

- Reduces data size while preserving information about feature presence and strength
- e.g., $2 \times 2 \rightarrow 1$ value = quarter size

Alternating convolution and pooling – bipyramidal effect:

Spatial size decreases, number of feature maps increases

Bipyramidal Architecture

 One of the oldest architecture types: wide and shallow, with a deeper fully connected part – close to the basic layered schema

Typical structure of a bipyramidal architecture:

- The number of filters typically doubles in deeper layers (e.g., 32, 64, 128, ...)
- Most commonly used filter size: 3 × 3
- ReLu activation
- Max-pooling 2×2 is often paired with filter doubling
- When using several convolutional layers, we may not need many fully connected layers
- (Optionally) One or more fully connected layers are added for classification

CNN_fashion_mnist.ipynb

• Practical example: MNIST dataset (handwritten digits)

Training a Convolutional Neural Network

- Typically trained using a variant of backpropagation (e.g., SGD)
- Mini-batch learning the model requires a large amount of data
- A high number of trainable parameters

How to choose a suitable architecture in practice?

- We usually don't optimize the number of layers or neurons manually
- We pick a proven topology from the literature for the given type of task:
 - Bipyramidal architecture
 - One of the modern architectures (e.g., https://keras.io/api/applications/)

Examples

CNN_fashion_mnist.ipynb

Practical example: Fashion MNIST dataset (digits)

Useful links:

- Interactive CNN visualization: https://poloclub.github.io/cnn-explainer/
- MathWorks activation visualization (face)