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Neural Networks 2 - Convolutional Neural Networks

Today's Lecture: Introduction to Convolutional Neural
Networks
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https://matlabacademy.mathworks.com/details/deep-learning-onramp/deeplearning
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Neural Networks 2 - Convolutional Neural Networks

Introduction to Convolutional Neural Networks

Today’s Lecture:
@ Motivating example: bird species classification
@ Convolution operation — intuition, purpose, and parameters
e Convolutional neural network architecture (layers, filters,
pooling)
Classic CNN architecture and Fashion MNIST example
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Neural Networks 2 - Convolutional Neural Networks

Reminder: Digital Image Representation

e A digital image is a matrix (tensor) of pixels.
e Each pixel (short for " picture element”) describes the color at
a specific position in the image.

(255,0, (255,128, (255,255, (128,255,
0) 0) 0) 0)

160 192 224 : 9125,

255 | 192 1160

(0,0, (1280, (2550, (2550,
255) 255) 255) 128)

(128,128, (192,192, (64,63, (0,0,
128) 192) 64) 0)

Grayscale Image
e Each pixel is a single value indicating brightness (e.g., 0 =
black, 255 = white).
@ For machine learning, pixel values are usually normalized to

the interval [0, 1].
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Neural Networks 2 - Convolutional Neural Networks

Reminder: Digital Image Representation

Color Image (RGB)
@ Each pixel consists of three components: R (red), G (green),
B (blue).
@ The image is represented as a 3D tensor of shape (height x
width x 3).

@ These components are called color channels.

Red

Example: convolution_introduction.ipynb
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https://github.com/reitezuz/18NES1-2025-/blob/main/week8/convolution_introduction.ipynb

Neural Networks 2 - Convolutional Neural Networks
Motivating Example: Bird Species Classification

Motivating Example: Image Classification
Bird Species Recognition
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Motivating Example: Bird Species Classification

Motivating Example: Bird Species Recognition

Classical Machine Learning Approach
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Model: e.g.., Multilayer Perceptron

Thorough preprocessing of the data: Feature Extraction
@ edge detection, LBP histograms, etc.

@ information loss; requires careful feature design
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Motivating Example: Bird Species Classification

Motivating Example: Bird Species Recognition

What if we train a neural network directly on the data?

Image 1200x800x3

Deep Learning Principle
@ let the model learn useful features from the data
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@ preprocess the data just slightly (e.g., vectorization,

normalization)

62 %

5%

12 %

17 %

8/38



Neural Networks 2 - Convolutional Neural Networks
Motivating Example: Bird Species Classification

Motivating Example: Bird Species Recognition

What if we train a neural network directly on the data?
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Model: (deep) Multilayer Perceptron

62 %

5%

12 %

17 %

Drawbacks of the classical approach (fully connected layers

only):
@ high number of features
@ loss of spatial relationships between pixels
@ it is difficult to train the model effectively
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Neural Networks 2 - Convolutional Neural Networks
Motivating Example: Bird Species Classification

Motivating Example: Bird Species Recognition

How could we improve this?
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Model: (deep) Convolutional Neural Networ

Convolutional Neural Network (CNN):
@ a neural network with convolutional layers
@ takes spatial arrangement of pixels into account
o fewer parameters, easier to train compared to fully connected
networks
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Neural Networks 2 - Convolutional Neural Networks
Motivating Example: Bird Species Classification

Motivating Example: Bird Species Recognition

Patterns in data: for example, beak shape

Let’s create a beak detector:

@ a simple model (e.g., a single-layer neural network) that
detects beaks in images

But: the beak may appear in different locations within the image
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Neural Networks 2 - Convolutional Neural Networks
Motivating Example: Bird Species Classification

Motivating Example: Bird Species Recognition

Patterns in data: for example, beak shape

The beak may appear in different image regions
o the detector should find a beak in any image and at any
location

— the detector must slide over the input image
12/38



Neural Networks 2 - Convolutional Neural Networks
Motivating Example: Bird Species Classification

Motivating Example: Bird Species Recognition

There are multiple patterns in the data (e.g., beak, feather,
eye):

The idea:

@ create a set of detectors for different features (patterns)
@ detectors should recognize features anywhere in the image
— detectors slide over the image
@ these detectors form the initial layers of a convolutional neural

network
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Neural Networks 2 - Convolutional Neural Networks
Motivating Example: Bird Species Classification

Convolutional Neural Network

@ A neural network that includes convolutional layers
Convolutional Layer
e Consists of a set of filters (also called kernels or detectors)
@ Each filter performs a convolution operation over the input
image
@ The output of the convolution (a feature map) is passed to
the next layer
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Neural Networks 2 - Convolutional Neural Networks
Convolution Operation

Convolution Operation

Convolutional Layer:

1/0[{0({0|0]|1 11-11-1
0/1/{0[{0(1]0 -1| 1 | -1 |Filter 1 (3x3)
0/0(1(1]0]|O0 “11-111
1/0/0({0(1]0
ol1]/olo[1]o0 A1)
ol1lol1 10 11| 1 | -1 [Filter 2 (3x3)
Image 6x6 (black and white) =l G

@ The convolutional layer contains several filters
@ Each filter detects a pattern (feature) of size 3 x 3 pixels
(e.g., diagonal edge, vertical edge, etc.)
Example source: Petr Dolezel — Convolutional Neural Network,

https://www.youtube.com /watch?v=-2vEi-AaOFA
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Neural Networks 2 - Convolutional Neural Networks
Convolution Operation

Convolution Operation

Filter 1 (3x3)

N
olofl1]{o[1]o0 El

Image 6x6 (black and white) Dot product of the window and filter

110({0)J0 (0|1 11-11-1
o(1/0jJ0|1]|0 111 |-1
0j{0|1)11|0]|0 A110-111
110(0|0|1]0
o(1/0|0|1]|0

@ We compute the dot product:
y =32 wix; + b (for flattened matrices)
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Convolution Operation

Convolution Operation

Filter 1 (3x3)
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Image 6x6 (black and white) Dot product of the window and filter

@ Move the sliding window and compute another dot product
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Neural Networks 2 - Convolutional Neural Networks
Convolution Operation

Convolution Operation

Filter 1 (3x3)

1/0[{0(0|0(1 11-11-1
0[{1/0[0|1]0 101 1-1
0{0(1]|1]0]0 A1 1
1/0/0f0[1]0 \ J
o(1(0(0(1|0
olo[1]/o]1]0 S ] I
Image 6x6 (black and white) 311]10]-3
-3|-3]0]1
3]-2]-2]1

Output feature map 4x4

@ By sliding the window over the image, we apply the filter to
the entire input

@ The result is a new 2 x 2 tensor — a feature map
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Neural Networks 2 - Convolutional Neural Networks
Convolution Operation

Convolution Operation

Filter 1 (3x3)

1/0(0|0|0|1 N -1 -1
0[{1/0|0|1]0 A1
0[{0|4]|1|0]|0 111 ™
1jojojo|1]0 \ J
0[{1/0|0|1]0
olt]of1]o Il I
Image 6x6 (black and white) -3|ijol-3
-3]-3] 0|1
3]-2]-2]1

Output feature map 4x4

Feature Map
@ Indicates where (and how strongly) the pattern represented by
the filter appears in the input image
@ Example: diagonal edge filter
19/38
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Convolution Operation

Convolution Operation

Filter 2 (3x3)

1/o0lo|o0f0]1 FIERE
ol1/ofof1]0 FIERE
olo/1][1]0]0 FIERE
100010\ J
o/1/o/of1]0
olo[1/0f1]0 el il I
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Output feature map 4x4

@ We can similarly apply a second filter
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Convolution Operation

Convolution Operation

Filter 2 (3x3)
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Image 6x6 (black and white) 1|1 -2|1
-1)-1]1-2§1
-1] o] -4]3

Output feature map 4x4

Second Feature Map
@ Indicates where (and how strongly) the pattern represented by
the second filter appears in the input image

@ Example: vertical edge filter
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Neural Networks 2 - Convolutional Neural Networks
Convolution Operation

Convolution Operation

Color Image: 3 input channels - R, G, B

Filter 2 (3x3x3)
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Image 6x6x3 (simplified) il I Il
1]-1)-7] 2
25| 2|8

Output feature map 4x4

Each filter has weights for all input channels (R, G, B)
Computation: convolution is performed separately on each
channel and the results are summed

Each filter produces one aggregated output feature map
The number of filters defines the number of output
channels
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Convolution Operation
Example: Zebra

Convolution Operation

Example: Zebra

Source:

https://matlabacademy.mathworks.com /details/deep-learning-onramp/deeplearning
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Convolution Operation
Example: Zebra

Convolution Operation

Example: Zebra

1|1(1]1
1]1(1]1
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@ Output after applying the vertical stripe filter

24/38
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Convolution Operation
Example: Zebra

Convolution Operation

Example: Zebra
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@ Clearly shows where the pattern is strongly present and where
it is not
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Convolution Operation
Example: Zebra

Convolution Operation

Example: Zebra

Vertical stripes

Diagonal cross
Horizontal edge N=
White blob

Diagonal edge

MmOEST

@ Examples of other filters and their resulting feature maps
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Neural Networks 2 - Convolutional Neural Networks
Convolution Operation
Convolution Operation Parameters

Convolution Operation

Convolution Operation Parameters

Dimensions of the input image

Padding — how borders are handled

Filter size

Stride — the step used to move the filter across the image

Understanding Hyperparameters

Input Size: 5 Input (5, 5) Output (3, 3)

L J
Padding: 1

Kernel Size: 3
-
Stride: 2

& Hover over the matrices to change kernel position.

Great interactive visualization:
https://poloclub.github.io/cnn-explainer/
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https://poloclub.github.io/cnn-explainer/

Neural Networks 2 - Convolutional Neural Networks
Convolution Operation
Convolution Operation Parameters

Convolution Parameters: Padding and Stride

Padding

@ Adds extra border pixels around the input image
e Common options:

e Valid — no padding (output shrinks)
e Same — padding added to keep output size the same as input

@ Helps preserve spatial size and improve edge detection

Stride
@ Controls how far the filter moves at each step
@ Stride = 1: typical setting, dense coverage

@ Stride j 1: reduces output size, performs downsampling

Tip: Try out different values in CNN Explainer
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https://poloclub.github.io/cnn-explainer/

Neural Networks 2 - Convolutional Neural Networks
Convolutional Neural Network
Classic CNN Architecture

Classic CNN Architecture

Stage 1 Stage 2 Stage 3

Conv Conv Conv

Core idea: stack convolutional layers (or blocks) on top of each
other

@ The first convolutional layer detects simple features (e.g.,
edges, blobs)

o Each following layer extracts higher-level features

Hierarchical structure of features:
edges — shapes — object parts — whole objects
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Convolutional Neural Network
Classic CNN Architecture

Classic CNN Architecture
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Main components of a CNN:
@ CNN base - Convolutional blocks for feature extraction
o Flattening layer — converts the feature maps into a 1D vector
@ Head - Fully connected neural network for classification

Image source: https:

//matlabacademy.mathworks.com/details/deep-learning-onramp/deeplearning
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https://matlabacademy.mathworks.com/details/deep-learning-onramp/deeplearning
https://matlabacademy.mathworks.com/details/deep-learning-onramp/deeplearning

Neural Networks 2 - Convolutional Neural Networks
Convolutional Neural Network
Classic CNN Architecture

Classic CNN Architecture

Input Feature exiraction Classification Output

Typical structure of a convolutional block:
e Convolutional layer
@ Nonlinear activation function (e.g., ReLU)
@ Pooling layer

Stage 1 Stage 2 Stage 3

Conv Conv Conv
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Convolutional Neural Network
Classic CNN Architecture

Pooling (Subsampling) Layer

@ Reduces spatial resolution while preserving most of the
relevant information

@ A sliding window (e.g., 2 X 2) moves across the feature map,
often with stride = 2

e Common operations: MAX (max pooling), AVERAGE
(average pooling); no weights involved

Why pooling?

@ Condenses the information stored in the feature map

@ Keeps track of where and how strongly a feature occurs

@ Reduces the data size (e.g., 2 X 2 — 1 value = 75%
reduction)
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Convolutional Neural Network
Classic CNN Architecture

Convolutional Block — Example: Convolutional Layer

vstupni obrazek (6x6x3)

17/0/0/0|0]|1
0(1/0/0|1]0
0(0(1/1]0]0
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0(0(1|/0]1]0
Filtr 1 (3x3) Filtr 2 (3x3)
11-1(-1 101141
11141 1111
‘} -1 1 11111
3]-1]-3]-1 -1]-1]-1] 1
-3l 1]0]-3 1121
-3]-3] o] 1 -1)-1)-2] 1
3|-2|-2]1 -1l o]-4]3

feature maps (4x4xpocet))
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Convolutional Neural Network
Classic CNN Architecture

Convolutional Block — Example: Pooling Layer
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Convolutional Neural Network
Classic CNN Architecture

Convolutional Block

Why not just stack convolutional layers without pooling?
@ The number of parameters grows with each added layer

@ Image size stays (almost) the same, especially with
"same" padding

= the size of the feature maps (and computation) keeps
growing

Pooling layer:

@ Reduces data size while preserving information about feature
presence and strength

@ eg., 2 x 2 — 1 value = quarter size
Alternating convolution and pooling — bipyramidal effect:

@ Spatial size decreases, number of feature maps increases
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Convolutional Neural Network
Classic CNN Architecture

Bipyramidal Architecture

@ One of the oldest architecture types: wide and shallow, with a
deeper fully connected part — close to the basic layered schema
Typical structure of a bipyramidal architecture:
@ The number of filters typically doubles in deeper layers (e.g.,
32, 64, 128, ...)
Most commonly used filter size: 3 x 3
ReLu activation
Max-pooling 2 x 2 is often paired with filter doubling
When using several convolutional layers, we may not need
many fully connected layers
o (Optionally) One or more fully connected layers are added for
classification

CNN _fashion_mnist.ipynb
@ Practical example: MNIST dataset (handwritten digits)

36/38


https://github.com/reitezuz/18NES2-2025/blob/main/week_06/CNN_fashion_mnist.ipynb

Neural Networks 2 - Convolutional Neural Networks
Convolutional Neural Network
Classic CNN Architecture

Training a Convolutional Neural Network

e Typically trained using a variant of backpropagation (e.g.,
SGD)

@ Mini-batch learning — the model requires a large amount of
data

@ A high number of trainable parameters
How to choose a suitable architecture in practice?
@ We usually don't optimize the number of layers or neurons
manually

@ We pick a proven topology from the literature for the given
type of task:

e Bipyramidal architecture
o One of the modern architectures

(e.g., https://keras.io/api/applications/)
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https://keras.io/api/applications/

Neural Networks 2 - Convolutional Neural Networks
Example

Examples

CNN _fashion_mnist.ipynb
@ Practical example: Fashion MNIST dataset (digits)
Useful links:

@ Interactive CNN visualization:
https://poloclub.github.io/cnn-explainer/

e MathWorks — activation visualization (face)
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https://github.com/reitezuz/18NES2-2025/blob/main/week_06/CNN_fashion_mnist.ipynb
https://poloclub.github.io/cnn-explainer/
https://www.mathworks.com/help/deeplearning/ug/visualize-activations-of-a-convolutional-neural-network.html
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