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Review

What We Covered Last Week

Multilayer Neural Network (MLP)
© More notes on hyperparameter setting.
o Learning algorithms for multilayer neural networks
@ Examples of various types of tasks:
o Binary classification (already covered), multiclass classification,
regression, time series prediction
e Specifics of each task and data preprocessing
© Generalization in MLPs and techniques for preventing
overfitting (with demonstrations and examples) - Introduction
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This Week

@ Generalization in MLPs and techniques for preventing
overfitting (with demonstrations and examples)

@ Introduction to Convolutional Neural Networks
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Generalization of Neural Networks

@ The ability to produce correct outputs for inputs not seen
during training

@ lllustration: well-trained model vs. overfitted model
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F. Chollet: Deep Learning with Python, Fig. 5.5
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Generalization of Neural Networks

@ Class boundaries are often hard to define:
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Chollet: Deep Learning with Python, Fig. 5.7
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Underfitting vs. Overfitting — Regression Example

@ Typical illustration of underfitting and overfitting in regression
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Generalization and Model Capacity

@ Generalization depends on the network’s architecture and
model capacity (i.e., number of parameters)
e Small model:
e Potentially stable but inaccurate predictions
e Risk of underfitting
o Large model:
o Greater variability in performance
e Risk of overfitting — poor generalization
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https://www.deeplearningbook.org/, Figure 5.3
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Model Capacity and Dataset Size

@ The required training set size depends on model capacity

@ Small model:

e Stable but potentially underfit
o Needs fewer training samples to generalize well

o Large model:

e Risk of overfitting
e Requires more training data to generalize properly
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https://www.deeplearningbook.org/, Figure 5.3
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Theoretical Insight: Generalization and Training Set Size

Theorem: Relationship between model capacity and required
number of training examples

@ For a network with one hidden layer, w parameters, h hidden
units, and generalization error €, the minimum number of
training samples N should satisfy:

h
N> Zlogs(Z)
€ €
— If N < %, the model cannot generalize properly

@ For target accuracy > 90%, choose at least 10 - w training
samples
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Generalization in Deep Networks

Estimated training set size for deeper architectures:
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@ More layers — more parameters — more data needed
@ Empirical rule: Often we need significantly more training

samples than parameters

@ To achieve good generalization:

o Use a sufficiently large training set, or
e Apply suitable regularization techniques
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How to Measure Generalization

Sampling-based techniques:
e Validation set:
o Split training data into training (e.g., 70%) and validation /test
(30%) subsets
e Train on training subset only
o Use validation/test data to estimate generalization error
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F. Chollet: Deep Learning with Python, Fig. 5.1
e Cross-validation (e.g., k-fold CV)
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Validation Set — Best Practices

Things to keep in mind:
o All subsets (training, validation, test) should be representative
and balanced across classes

@ For time series: validation/test data should follow training
data chronologically

@ Avoid redundancy — similar examples in training and
validation/test sets may bias evaluation
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Cross-Validation (CV)

@ Allows reliable generalization error estimation, especially with
small datasets

@ Extends the basic train/test split principle

@ Helps detect overfitting / underfitting

@ Useful for model and hyperparameter comparisons
Common types of CV:

@ Monte Carlo CV - random, flexible, suitable for mid-size
datasets

o k-fold CV — systematic, ensures all samples are used, great
for small datasets
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Monte Carlo Cross-Validation

Basic principle: random repeated splitting
Q Fori=1, ..k
o Randomly split dataset T into Ty (training) and T, (test), e.g.
70:30
e Train the model on T7, evaluate on T
e Record the test error

@ Compute mean and standard deviation of errors over k runs
(typically kK = 100)
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Generalization Ability of Multilayer Neural Networks
Cross-Validation

k-Fold Cross-Validation

@ Compared to Monte Carlo, it systematically covers the entire
dataset (no sample is left out)

Basic principle:

@ Split training data T into k equally sized disjoint subsets
T1,eey Tx

Q@ Fori=1,..k:

e Trainon T\ T;, evaluate on T;
o Record the test error

© Compute the average and standard deviation over all k runs
(commonly k = 10)
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Practical example

regularization_mnist.ipynb
@ Practical example: MNIST digit dataset with limited training
set size
@ Task: experiment with model size and training set size
@ Observe how validation and test error increase (i.e.,

generalization performance decreases) as the training set
becomes smaller or the model becomes larger
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https://github.com/reitezuz/18NES1-2025-/blob/4187579099b1a24e5135b68058ff9010cc306f96/week7/regularization_mnist.ipynb
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How to Improve Generalization in (Deep) Neural
Networks?

e Find the optimal architecture for a given dataset (number
of layers and neurons, activation functions)
o Neural Architecture Search (NAS), e.g., AutoKeras library
@ Increase training set size (data augmentation)
e Feature engineering (extract more informative input
features)
o Early stopping using a validation set
e Regularization techniques

o L1/L2 regularization, Dropout, DropConnect
o Label smoothing

e Normalization of data, weights, and layer outputs
e Transfer learning and Ensembling
e Hyperparameter tuning (Grid Search, Random Search,

Bayesian Optimization), e.g., Keras Tuner
17/32



Neural Networks 1 - Multilayer neural networks
Techniques to Improve Generalization in MLPs
Early Stopping

Early Stopping

e Split training data into training (e.g., 70-90%), validation and
test subsets

@ Train the model only on the training subset

@ Stop training once validation loss starts increasing

o Evaluate the model performance on the test set

@ Caution: validation and test sets must be completely
independent!
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F. Chollet: Deep Learning with Python, Fig. 5.1
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Early Stopping — Visualization

Further training: a robust
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F. Chollet: Deep Learning with Python, Fig. 5.10
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Regularization Techniques

Core idea:

@ Add penalty terms to the basic loss function (e.g., Ejsss):

E = Closs * Eloss + CAEA + CBEB + ...

@ Occam’s Razor: smaller networks with simpler, smoother
functions generalize better

@ Many penalty terms exist, from simple to complex
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Regularization Techniques — L2 Regularization

L2 Regularization (Weight Decay) (Werbos, 1988)
@ One of the most well-known penalty terms:

E= BE/oss + (1 - 6) : %HV_‘;H% = BE/oss + (1 - B)Z W,-2

i
e i indexes all weights and biases in the model

e 0 < B <1 ... weights the error terms
@ Weight update rule:

OE, loss

wi(t+ 1) = w;(t) — « Dw;

— a,w;(t)

@ Penalizes large weights, helps prevent overfitting
@ We can prune insignificant weights (i.e., weights with low
magnitude)
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Regularization Techniques — L1 Regularization

L1 Regularization (Lasso)

@ Promotes sparsity by zeroing some weights:

E= /BEloss+ 1_ Z‘WI’

@ Weight update rule:

E
wi(t+ 1) = w;(t) — QM — a, - sign(w;)

ow;

Adding Gaussian noise to the training set
@ Augment the training set with “noised” samples

@ Has a similar effect to L2 regularization
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Hint-Based Learning

(Mostafa, 1993; Suddarth, 1990)

@ Enhances generalization and accelerates training

@ Leads to smoother learned functions, supports pruning
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Dropout (Srivastava et al., 2014)

e Highly effective regularization method

@ Randomly deactivates hidden neurons during training

@ During inference (after the model is trained), all neurons are
active

@ Implemented by adding a Dropout layer after each fully
connected layer
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Srivastava, Nitish, et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”, JMLR 2014 24/32
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Normalization

Normalization Techniques

@ Includes normalization of data, weights, and layer outputs
@ Often implemented via dedicated normalization layers

e Batch Normalization — normalizes layer otputs across batch
samples for each neuron (used in MLPs, CNNs)

o Layer Normalization — normalizes layer outputs across
neurons per sample (used in RNNs, Transformers)

@ Helps prevent saturation and vanishing gradients

@ Overall, improves stability and convergence in deep networks
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Pruning of Multilayer Neural Networks

Idea:
@ Evaluate which parts of the model are important:

o Connections (weights)
e Hidden neurons
e Input features

@ Remove redundant parts of the model
Motivation:

o Faster inference, reduced memory requirements

@ Improve generalization and reduce overfitting

@ Produce a more interpretable model

@ Automatically detect the most important input features
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Pruning of Multilayer Neural Networks

Algorithm:

@ Train a model with a sufficiently large architecture

@ While validation error continues to decrease (or remains below
a threshold):

@® Compute relevance scores for hidden units or connections
® Remove the least relevant neuron(s) or connection(s)
© Fine-tune (retrain) the pruned network

Challenges:
@ How to define neuron/connection relevance

@ Choosing an appropriate pruning strategy
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Pruning Criteria — Measuring Relevance of Neurons

Common relevance scores for hidden neurons:

o Sum of outgoing weights: W, =" w}

— Simple yet effective
. _ Pir)2

o Goodness factor: G =3 > :(y/ wy)
— Rewards neurons with strong connections and frequent
activation

o Consuming energy: £ =3 > y wyy;
— Highlights neurons that are often co-activated with the

next layer

8yj o 8y_,

o Sensitivity coefficients: 5 = aw O oy,
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Other Generalization Techniques for Deep Networks

o Label smoothing — prevents overconfident predictions by
softening the target distribution

e Transfer learning — reuses pretrained models on similar tasks

e Ensembling — combining multiple models improves accuracy
and robustness
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to Improve Generalization in MLPs

Pruning of MLPs

Practical Advice: When Your Model Fails to Generalize

Tip

Improve training data or extract better features
Reduce model size, use adaptive learning rate, tune
hyperparameters

Apply Dropout

Alternatively:

e Use Batch Normalization for large models
o Use L2 Regularization for smaller models

: Start simple. Monitor results. Regularize wisely.
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Practical Examples

regularization_mnist.ipynb
@ MNIST digits dataset with limited training size
@ Demonstrates core techniques for generalization: early
stopping, regularization, dropout
@ Includes cross-validation example
images_simple_mlp_autoencoder.ipynb
@ Simple autoencoder (input = output)
o lllustrates how regularization (e.g., dataset augmentation)
influences learning
@ Try varying training set size and number of neurons to observe
effects
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https://github.com/reitezuz/18NES1-2025-/blob/4187579099b1a24e5135b68058ff9010cc306f96/week7/regularization_mnist.ipynb
https://github.com/reitezuz/18NES1-2025-/blob/4187579099b1a24e5135b68058ff9010cc306f96/week7/images_simple_mlp_autoencoder.ipynb

Neural Networks 1 - Multilayer neural networks
Techniques to Improve Generalization in MLPs
Examples

Optional Homework

images_simple_mlp_autoencoder.ipynb

@ Use your own images and modify the notebook to strongly
alter their color palette (differently than in the example)

@ Choose your own training image and create a custom data
augmentation strategy

@ You may need to adjust the number of neurons to fit your
input

@ Submit the modified notebook, original image(s), and
transformed output(s)
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