
Neural Networks 1 - Multilayer neural networks

Review

Neural Networks 1 - Multilayer neural networks
18NES1 - Lecture 8, Summer semester 2024/25

Zuzana Peťŕıčková

April 8th, 2025

1 / 55

Neural Networks 1 - Multilayer neural networks

Review

What We Covered Last Week

Multilayer Neural Network (MLP) and the Backpropagation
Algorithm

1 Overview of Python libraries for deep learning, including code
examples and instructions of local installation

2 Interactive visualizations with TensorFlow Playground

3 Brief analysis of the multi-layer neural network model with the
backpropagation algorithm

4 Step-by-step example using Keras on a sample task (binary
classification). Setting hyperparameters and understanding
their impact on the training process. Using TensorBoard.

2 / 55

Neural Networks 1 - Multilayer neural networks

Review

This Week

1 Recall and finish the Keras example
2 More notes on hyperparameter setting

Learning algorithms for multilayer neural networks

3 Examples of various types of tasks:

Binary classification (already covered), multiclass classification,
regression, time series prediction
Specifics of each task and data preprocessing

4 Generalization in MLPs and techniques for preventing
overfitting (with demonstrations and examples)

3 / 55

Neural Networks 1 - Multilayer neural networks

Review

Example from the last week

keras simple example.ipynb

A detailed example in Keras – step-by-step learning procedure
(on a binary classification task)

Data preprocessing and analysis. Model creation and
hyperparameter tuning. Training progress. Visualization.
Evaluation.

Hyperparameter tuning.

Visualization using TensorBoard.

We will switch between the slides and the example notebook
during the session.

4 / 55

https://github.com/reitezuz/18NES1-2025-/blob/main/week6/keras_simple_example.ipynb

Neural Networks 1 - Multilayer neural networks

Setting Hyperparameters of an MLP Model

Key Hyperparameters of an MLP Model

Architecture

Model size: Number of hidden layers and number of neurons
per layer
Activation functions in each layer: relu, sigmoid, tanh,
softmax, ...

Other key hyperparameters

Loss function: MSE, binary crossentropy, ...
Evaluation metrics: accuracy, MSE, precision, ...
Optimization algorithm: SGD, Adam, RMSProp, ...
Learning rate, and possibly other optimizer-specific
parameters
Batch size
Number of epochs
Weight initialization: Typically small random values
Regularization: L2, Dropout, Early stopping, ...

5 / 55

Neural Networks 1 - Multilayer neural networks

Setting Hyperparameters of an MLP Model

Learning Algorithm (Optimizer)

Optimizers for Deep Neural Networks

Based on gradient descent; often use adaptive and local
learning rates

SGD (Stochastic Gradient Descent) – basic optimizer, uses
mini-batches; stable
Adam – currently the most popular; adaptive learning rate;
faster convergence
RMSprop – suitable for sequential and online data
AdaGrad, Adadelta, AdaMax, NAdam, FTRL, ...

Each optimizer has additional hyperparameters (e.g., SGD:
learning rate, momentum, nesterov)
In most cases, the default settings work well.

https://keras.io/api/optimizers/

6 / 55

https://keras.io/api/optimizers/

Neural Networks 1 - Multilayer neural networks

Setting Hyperparameters of an MLP Model

Learning Algorithm (Optimizer)

TensorBoard

A tool for visualizing training and evaluation of neural
networks.
Displays loss curves, metrics, model graph, weight
distributions, and more.
Enables real-time monitoring during training.
Supports comparison of multiple model runs.

Usage in Keras:

from keras.callbacks import TensorBoard

log_dir = "logs/fit/" + ...

tensorboard_callback = TensorBoard(log_dir=log_dir,...)

model.fit(..., callbacks=[tensorboard_callback,...])

Run from terminal:
tensorboard --logdir=logs/fit

Documentation: tensorflow.org/tensorboard 7 / 55

https://www.tensorflow.org/tensorboard

Neural Networks 1 - Multilayer neural networks

Setting Hyperparameters of an MLP Model

Learning Algorithm (Optimizer)

Example – Optional Homework from the last week

keras simple example.ipynb

Use this notebook to explore how different hyperparameter
settings (architecture, learning rate, etc.) affect the training
process and the final results.

Suggestions for experiments are included directly in the
notebook.

Try working with TensorBoard (you can also run it locally on
your own machine).

Optionally, modify the code and try training an MLP on
different datasets from the scikit-learn repository (e.g., iris,
diabetes, wine).

8 / 55

https://github.com/reitezuz/18NES1-2025-/blob/main/week6/keras_simple_example.ipynb
https://scikit-learn.org/stable/api/sklearn.datasets.html

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

MLP Model Analysis
Learning Speed and Approximation Capabilities

Backpropagation is relatively slow.

Poor hyperparameter choice can make it even slower.

Nevertheless, it often outperforms many ”fast algorithms”,
especially when:

The task has realistic complexity
The training set size exceeds a critical threshold

9 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

MLP Model Analysis
Learning Speed and Approximation Capabilities

How to speed up learning while maintaining good
approximation

Proper initialization of weights and biases

Preprocessing and normalization of input data

Proper learning rate selection

Use of fast learning algorithms

Simultaneous adaptation of weights, biases, and network
architecture

10 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Choosing a Suitable Learning Rate

The learning rate α is a key parameter in training

It controls how quickly the model learns

How to choose the learning rate?

Too small – slow learning (tiny weight updates), risk of
getting stuck in suboptimal local minima

Too large – large jumps, risk of oscillations and skipping over
minima of the loss function

What helps?

Tuning the learning rate for a specific task

Using momentum (momentum, nesterov)

Adaptive learning rate methods (Adam, RMSprop,...)

11 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Backpropagation with Momentum

Backpropagation with Momentum

Problem: In narrow valleys of the error surface, following the
gradient may cause large and frequent oscillations:

The gradient fluctuates → slows convergence

Solution: Add a momentum term

In addition to the current gradient, incorporate the previous
weight updates

Effect: Increased inertia helps maintain direction, reduces
oscillations

https://www.andreaperlato.com/aipost/gradient-descent-with-momentum/

12 / 55

https://www.andreaperlato.com/aipost/gradient-descent-with-momentum/

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Backpropagation with Momentum

Backpropagation with Momentum

Updated weight update rule:

Weight change from neuron i to neuron j at time t + 1:

∆wij(t + 1) = −α ∂Et

∂wij
+ αm∆wij(t)

= −α ∂E

∂wij
+ αm(wij(t)− wij(t − 1))

α ... learning rate

αm ... momentum coefficient

13 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Backpropagation with Momentum

Backpropagation with Momentum

Momentum Term:

∆wij(t + 1) = −α ∂Et

∂wij
+ αm∆wij(t)

Helps maintain direction in narrow valleys of the loss surface

Reduces the risk of getting stuck in unstable states (local
minima, saddle points)

Speeds up convergence (longer stretches with consistent
gradient direction)

Too large αm – excessive inertia, may overshoot the minimum

14 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Backpropagation with Momentum

Nesterov Momentum

Improvement over classical momentum:

”Looks ahead”– computes gradient at the anticipated next
position

Provides better stability and faster convergence in practice

Weight update steps:
1 Compute the lookahead position:

w̃ij(t) = wij(t) + αm ·∆wij(t − 1)

2 Compute gradient at this anticipated position:

∆wij(t) = −α · ∂E
∂wij

∣∣∣∣
w=w̃(t)

+ αm ·∆wij(t − 1)

3 Update the weight:

wij(t + 1) = wij(t) + ∆wij(t)

15 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Backpropagation with Momentum

Nesterov Momentum

Weight Update Summary:
1 Compute the lookahead position:

w̃ij(t) = wij(t) + αm ·∆wij(t − 1)

2 Evaluate the gradient at that position:

∆wij(t) = −α · ∂E
∂wij

∣∣∣∣
w=w̃(t)

+ αm ·∆wij(t − 1)

3 Update the weight: wij(t + 1) = wij(t) + ∆wij(t)

https://github.com/cs231n/cs231n.github.io/blob/master/assets/nn3/nesterov.jpeg
16 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Backpropagation with Momentum

Momentum vs. Nesterov Momentum – Summary

Classical Momentum:

Reacts after the update

Simpler to implement

Nesterov Momentum:

Looks ahead – computes gradient before the update

Better convergence in practice

In Keras: both variants available in SGD

optimizer = SGD(learning rate=0.01, momentum=0.9,
nesterov=True)

https://keras.io/api/optimizers/sgd/

17 / 55

https://keras.io/api/optimizers/sgd/

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Backpropagation with Momentum

Setting Learning Parameters

Learning rate α
Small α → slow learning, risk of getting stuck in local minima
Large α → fast learning, but risk of oscillations and instability

Momentum αm

Helps overcome flat areas, stabilizes learning in steep regions
Too large → may overshoot the minimum
Typical values: 0.8 ≤ αm ≤ 0.95

Use Nesterov Momentum?
Yes, when: the model is deep or the error surface is complex
Useful when standard momentum leads to oscillations or
slowdowns
Often a good default choice in modern frameworks

Challenge: Proper parameter tuning is difficult and task-dependent

Solution: Adaptive learning rate methods
18 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Adaptive Learning Rate Control

Adaptive Learning Rate Control

Various strategies exist — from simple heuristics to
sophisticated methods

Primitive Heuristic (already discussed):

The learning rate should decrease as the number of epochs
increases

Initial learning rate: 0� α < 1

Helps escape shallow local minima
Enables rapid early learning

Final learning rate: α ∼ 0

Prevents oscillations
Should not decrease too quickly; it is sufficient to ensure:∑∞

t=0 αt =∞,
∑∞

t=0 α
2
t <∞

19 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Adaptive Learning Rate Control

Adaptive Learning Rate

Local learning rate for each weight

Weight update from neuron i to neuron j at time t + 1:

∆wij(t + 1) = −αij ,t+1
∂Et

∂wij
+ αm∆wij(t)

20 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Adaptive Learning Rate Control

Resilient Propagation (Rprop) – Silva & Almeida

Learning rule based on the sign change of the partial
derivative:

Initialize αij ,0 with small random values

Accelerate learning if the sign of ∂E
∂wij

remains the same for

two consecutive iterations

Slow down learning if the sign changes

Variants:

Basic Rprop (Silva & Almeida)

Super SAB

Rprop+

...

21 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Adaptive Learning Rate Control

Resilient Propagation (Rprop) – Silva & Almeida

Learning rate adaptation at time (t + 1)

αij ,t+1 = u · αij ,t , if ∂Et
∂wij
· ∂Et−1

∂wij
> 0

αij ,t+1 = d · αij ,t , if ∂Et
∂wij
· ∂Et−1

∂wij
< 0

Constants: u > 1, d < 1

Problems:

Learning rate grows or shrinks exponentially due to u and d
→ Issues may arise if many consecutive accelerations occur

22 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Adaptive Learning Rate Control

Resilient Propagation (Rprop) – Super SAB

Algorithm:

Initialize all α0
ij to a starting value αstart

Perform step t of the backpropagation algorithm with
momentum

If ∂Et
∂wij
· ∂Et−1

∂wij
> 0: αij ,t+1 = u · αij ,t

If ∂Et
∂wij
· ∂Et−1

∂wij
< 0:

Cancel previous weight update: wij(t + 1) = wij(t)−∆wij(t)
Decrease learning rate: αij,t+1 = d · αij,t

Properties:

Orders of magnitude faster than standard backpropagation

Relatively stable

Robust to choice of initial parameters

23 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Adaptive Learning Rate Control

Resilient Propagation (Rprop+)

Learning rate is adjusted based on changes in the error value,
rather than the sign of the gradient

Faster than Super SAB

Algorithm:

Initialize all α0
ij to a starting value αstart

Perform step t of the backpropagation algorithm with
momentum

If Et < Et−1:

Increase learning rate: αij,t+1 = u · αij,t

If Et > c · Et−1:

Cancel previous weight update: wij(t + 1) = wij(t)−∆wij(t)
Decrease learning rate: αij,t+1 = d · αij,t

Constants c > 1, u > 1, d < 1

24 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Modern Learning Algorithms in Libraries like Keras and PyTorch

Modern Optimization Algorithms

Foundation:

SGD (Stochastic Gradient Descent) – the basic algorithm,
improved using momentum (Momentum / Nesterov
Momentum)

Modern optimizers in libraries like Keras and PyTorch:

RMSprop – adaptive learning rate, suitable especially for
recurrent models (RNNs)
Adam (Adaptive Moment Estimation) – currently the
most widely used
NAdam – Adam combined with Nesterov momentum
and many others (AdaGrad, Adadelta, AdaMax, FTRL, ...)

Typical advantages of modern optimizers

faster convergence thanks to adaptive learning rates
lower sensitivity to hyperparameter settings

https://keras.io/api/optimizers/
25 / 55

https://keras.io/api/optimizers/

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Modern Learning Algorithms in Libraries like Keras and PyTorch

RMSprop – Root Mean Square Propagation

Key Idea:

The error surface may have various steep and flat regions in
different directions (flat vs steep vs bumpy surface)

We don’t want to use the same learning step in all directions

RMSprop adjusts the step size for each weight individually,
depending on how much the gradient varies in that direction

It acts as an adaptive shock absorber for rough terrains

How does it work?

It tracks an exponential moving average of squared gradients
for each weight:

vij(t) = β · vij(t − 1) + (1− β) ·
(
∂Et

∂wij

)2

26 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Modern Learning Algorithms in Libraries like Keras and PyTorch

RMSprop – Root Mean Square Propagation

How does it work?

It tracks an exponential moving average of squared gradients:

vij(t) = β · vij(t − 1) + (1− β) ·
(
∂Et

∂wij

)2

If gradients are frequently large → step size is reduced (slower
learning)

If gradients are small → step size remains larger (faster
learning)

Weight update:

∆wij(t) = − α√
vij(t) + ε

· ∂Et

∂wij

wij(t + 1) = wij(t) + ∆wij(t)

27 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Modern Learning Algorithms in Libraries like Keras and PyTorch

RMSprop – Root Mean Square Propagation

Result:

More stable learning, especially in networks with gradients of
varying scale (e.g., RNNs)

Less dependent on manual tuning of the learning rate α

Use Cases:

Commonly used for recurrent neural networks (RNNs)

Handles non-stationary gradients well

28 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Modern Learning Algorithms in Libraries like Keras and PyTorch

Adam – Adaptive Moment Estimation

Principle:

Combines the benefits of momentum (1st moment) and
RMSprop (2nd moment)

Estimates the mean and variance of gradients using
exponential moving averages

Tracks:

mij(t) – moving average of gradients (1st moment estimate)
vij(t) – moving average of squared gradients (2nd moment
estimate)

Includes bias correction to account for initialization effects

29 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Modern Learning Algorithms in Libraries like Keras and PyTorch

Adam – Adaptive Moment Estimation

Weight update:

∆wij(t) = −α ·
m̂ij(t)√
v̂ij(t) + ε

wij(t + 1) = wij(t) + ∆wij(t)

Where:

gij(t) =
∂Et

∂wij

mij(t) = β1 ·mij(t − 1) + (1− β1) · gij(t)

vij(t) = β2 · vij(t − 1) + (1− β2) · g2
ij (t)

m̂ij(t) =
mij(t)

1− βt1
, v̂ij(t) =

vij(t)

1− βt2

Typical values: α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−7

30 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Modern Learning Algorithms in Libraries like Keras and PyTorch

Adam – Adaptive Moment Estimation

General-purpose, reliable optimizer – works well in most
scenarios without much parameter tuning

Combines the benefits of:
Momentum – smoother, more stable weight updates
Adaptive step size – like RMSprop

Default choice in frameworks like Keras and PyTorch

For some tasks (e.g., convex loss surfaces), it may lead to
suboptimal solutions
→ in such cases, SGD or RMSprop may perform better

Keras:
optimizer = Adam(learning rate=0.001, beta 1=0.9,

beta 2=0.999, epsilon=1e-7)

31 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Modern Learning Algorithms in Libraries like Keras and PyTorch

Nadam – Nesterov-accelerated Adam

Combines the benefits of:

Adam (adaptive learning + momentum)

Nesterov momentum (lookahead gradient evaluation)

Effect:

Faster and more stable convergence compared to standard
Adam

Suitable for deep networks and complex learning problems

32 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Modern Learning Algorithms in Libraries like Keras and PyTorch

Summary of Modern Optimizers

Optimizer Advantages When to Use

SGD simple, transparent small models,
manual tuning

SGD+Moment. faster convergence deeper networks

RMSprop adaptive step size, stable RNNs, sequential data

Adam robust, minimal tuning universal default
Nadam even more stable deep and complex

models

33 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Other Tricks to Improve Learning

Other Tricks to Improve Learning

Run training multiple times

Use different random weight initializations and select the
best-performing model

If the network fails to converge or converges very slowly

Try adding more neurons or layers

Present important training examples more frequently

Helps reduce error for critical patterns

34 / 55

Neural Networks 1 - Multilayer neural networks

Learning Speed and Approximation Capabilities

Other Tricks to Improve Learning

Other Tricks to Improve Learning

“Network annealing” = injecting random noise

Use when weights and biases settle but the error remains high

Adapt weight from neuron i to j :

wij(t + 1) = wij(t) + N(0, ε)

Choose ε carefully:

Too small → ineffective
Too large → network may require full retraining

35 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Practical Examples of Different Task Types

Binary classification: Breast Cancer (already covered)

Multiclass classification: MNIST

Regression task: Wine Quality

Time series prediction: Daily minimum temperatures in
Melbourne

36 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Binary Classification

Binary Classification Example: Breast Cancer

Already covered last time

Model setup:

Sigmoid activation in the output layer

ReLU (or tanh) activation in hidden layers

Loss function: BinaryCrossentropy; Metrics: Accuracy,
Precision, Recall, ...

37 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Multiclass Classification

Multiclass Classification Example: MNIST

60,000 grayscale images of handwritten digits (28x28 pixels)

Centered images, uniform digit size

10,000 test images written by different people

Output label: digit 0–9 (10 classes)

Data characteristics:

All images have the same size → no resizing needed
Input data is 3D → needs to be flattened into vectors
(vectorized)
Pixel values range from 0 to 255 → need to normalize to [0, 1]
or [−1, 1]

38 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Multiclass Classification

Multiclass Classification Example: MNIST

Model setup:

Softmax activation in the output layer

ReLU (or tanh) activation in hidden layers

Loss function: SparseCategoricalCrossentropy with
SparseCategoricalAccuracy (if labels are integers)

Or: CategoricalCrossentropy with CategoricalAccuracy (if
labels are one-hot vectors)

Observations:

Test accuracy is typically around 85 %

Similar training and validation errors → model generalizes well

Accuracy can be improved by increasing the learning rate,
number of epochs, or changing the optimizer

39 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Regression

Regression Example: Wine Quality Data

11 numerical input features (e.g., acidity, alcohol content,
sulfur dioxide, ...)

1 output feature – wine quality (rating from 0–10, most
values 3–8)

Data characteristics:

Features have different value ranges → normalization required
(e.g., using StandardScaler)

Sufficient number of samples (4900)
1 Allows training of larger models without immediate risk of

overfitting
2 Dataset can be split into training, validation, and test sets

40 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Regression

Regression Example: Wine Quality Data

Model setup for regression:

ReLU (or tanh) activation in hidden layers

Linear (identity) activation in the output layer

Loss function: MeanSquaredError (MSE)

Metrics: MeanAbsoluteError (MAE),
RootMeanSquaredError (RMSE)

41 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Regression

Regression Example: Wine Quality Data

Observations:

The model learns better for values in the center of the range
than for the edges (due to data imbalance) → possible
solution: oversampling

Without early stopping, overfitting may occur (especially with
larger architectures)

Performance is sensitive to normalization of input features

Summary:
1 For regression tasks, use a linear output and MSE as the loss

function.

2 Normalize input features with varying ranges to improve
model training.

3 In addition to MSE, consider using MAE or RMSE for better
interpretability.

42 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Regression

Alternative Approach: Wine Quality as Classification

Same dataset, different perspective: Predicting wine quality as
a classification task instead of regression.

Convert quality (0–10) into classes, e.g.:

0–4: low quality
5–6: medium quality
7–10: high quality

Question: If we switch from a regression model to a classification
model, what changes?

Output layer, loss function, and evaluation metrics

43 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Regression

Alternative Approach: Wine Quality as Classification

Model setup for classification:

Output layer: 3 neurons with softmax activation

Loss function: categorical crossentropy or
sparse categorical crossentropy (if using class indices)

Metrics: accuracy, possibly precision, recall, F1-score

Note:

Class distribution is imbalanced → track multiple metrics, not
just accuracy

Classification vs. Regression – which makes more sense for
this task?

Consider the application and interpretability when choosing
the approach

44 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Time Series

Time Series Example: Daily Minimum Temperatures

Dataset: Daily minimum temperatures in Melbourne, years
1981–1990

Goal: predict the temperature of the next day based on
previous values

Data characteristics:

Single feature (temperature time series)

Over 3600 records – sufficient for training and testing

Data points are not independent – temporal dependencies
must be captured

Using the Sliding Window Method:

For each training sample, use e.g. the last 10 days to predict
the next day

This creates a tabular representation suitable even for MLP
45 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Time Series

Daily Min. Temperatures – Model and Configuration

Input preparation:

Create training, validation, and test sets using sliding windows
(with separate time period for each set!)
Normalize input values (e.g., MinMaxScaler)

Model configuration:

Input layer: number of neurons = window size (e.g., 10)
Hidden layers with ReLU or tanh activation
Output layer with linear activation (1 value = temperature
prediction)
Loss function: MSE; Metrics: MSE / MAE / RMSE

Observations:

The MLP needs tuning to outperform a baseline model
The choice of window size significantly affects prediction
quality
The model can overfit if the architecture is too complex

46 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Time Series

Summary: Time Series and Sliding Window Method

1 Time series do not consist of independent samples – training,
validation, and test sets must preserve temporal order.

2 The sliding window method allows transformation of a time
series into a training set for MLP.

3 Window size (number of input values) is an important
hyperparameter.

4 Use a linear output function, just like in regression.

5 Although specialized architectures (RNNs, LSTMs) perform
better on time series, an MLP with sliding window is a simple
and intuitive starting point.

47 / 55

Neural Networks 1 - Multilayer neural networks

Practical Examples of Different Task Types

Time Series

Summary: Time Series and Sliding Window Method

Possible extensions:

Model input can include not only past values of the target
variable, but also other features (e.g., pressure, humidity, etc.)

Instead of predicting just one future value, you can predict a
longer time horizon or multiple future values

48 / 55

Neural Networks 1 - Multilayer neural networks

Generalization Ability of Multilayer Neural Networks

Generalization of Neural Networks

The ability to produce correct outputs for inputs not seen
during training

Illustration: well-trained model vs. overfitted model

F. Chollet: Deep Learning with Python, Fig. 5.5

49 / 55

Neural Networks 1 - Multilayer neural networks

Generalization Ability of Multilayer Neural Networks

Generalization of Neural Networks

Class boundaries are often hard to define:

F.
Chollet: Deep Learning with Python, Fig. 5.7

50 / 55

Neural Networks 1 - Multilayer neural networks

Generalization Ability of Multilayer Neural Networks

Underfitting vs. Overfitting – Regression Example

Typical illustration of underfitting and overfitting in regression
tasks:

0 1 2 3 4 5
x

1.5

1.0

0.5

0.0

0.5

1.0

y

Underfitting
Training data
True function
Model 1 prediction
Model 2 prediction

0 1 2 3 4 5
x

4

3

2

1

0

1

y

Overfitting
Training data
True function
Model prediction

51 / 55

Neural Networks 1 - Multilayer neural networks

Generalization Ability of Multilayer Neural Networks

Generalization and Model Capacity

Generalization depends on the network’s architecture and
model capacity (i.e., number of parameters)

Small model:
Potentially stable but inaccurate predictions
Risk of underfitting

Large model:
Greater variability in performance
Risk of overfitting – poor generalization

https://www.deeplearningbook.org/, Figure 5.3
52 / 55

Neural Networks 1 - Multilayer neural networks

Generalization Ability of Multilayer Neural Networks

Model Capacity and Dataset Size

The required training set size depends on model capacity

Small model:
Stable but potentially underfit
Needs fewer training samples to generalize well

Large model:
Risk of overfitting
Requires more training data to generalize properly

https://www.deeplearningbook.org/, Figure 5.3

53 / 55

Neural Networks 1 - Multilayer neural networks

Generalization Ability of Multilayer Neural Networks

Theoretical Insight: Generalization and Training Set Size

Theorem: Relationship between model capacity and required
number of training examples

For a network with one hidden layer, w parameters, h hidden
units, and generalization error ε, the minimum number of
training samples N should satisfy:

N ≥ w

ε
log2(

h

ε
)

→ If N < w
ε , the model cannot generalize properly

For target accuracy ≥ 90%, choose at least 10 · w training
samples

54 / 55

Neural Networks 1 - Multilayer neural networks

Generalization Ability of Multilayer Neural Networks

Generalization in Deep Networks

Estimated training set size for deeper architectures:

N ≥ O

(
w · logw

ε

)

More layers → more parameters → more data needed

Empirical rule: Often we need significantly more training
samples than parameters

To achieve good generalization:

Use a sufficiently large training set, or
Apply suitable regularization techniques

55 / 55

	Review
	Setting Hyperparameters of an MLP Model
	Learning Algorithm (Optimizer)

	Learning Speed and Approximation Capabilities
	Backpropagation with Momentum
	Adaptive Learning Rate Control
	Modern Learning Algorithms in Libraries like Keras and PyTorch
	Other Tricks to Improve Learning

	Practical Examples of Different Task Types
	Binary Classification
	Multiclass Classification
	Regression
	Time Series

	Generalization Ability of Multilayer Neural Networks

