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What We Covered Last Time

1 Single-layer neural network
Multivariate linear regression (linear neural network)
Multiclass linear classification / pattern recognition
(single-layer perceptron)
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1 Multi-layer neural network (MLP)

2 Backpropagation algorithm
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Multi-Layer Neural Network (Multi-Layer Perceptron,
MLP, 1980)

Hierarchical sequential architecture: neurons are arranged in
layers

Dense (fully connected) layers: every neuron in one layer is
connected to every neuron in the next layer

Special input layer:

corresponds to the inputs of the
neural network

Output layer:

the output (response) of the
network corresponds to the
activations of the output neurons

The remaining layers are hidden layers.
output layerinput_layer hidden layers
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Backpropagation Algorithm

Core principle: it is a standard gradient descent method

1 Randomly initialize the model parameters (weights and biases)
2 Repeat for training epochs:

Prepare a batch of input samples X and their corresponding
target outputs D
Compute the model’s actual outputs Y
Compute the model error (difference between Y and D)
Update parameters (weights and biases) to slightly reduce the
error (i.e., move in the opposite direction of the loss gradient):

wi (t + 1) = wi (t)− αt
∂Et

∂wi

Nice visualizations of loss surfaces:
jithinjk.github.io/blog/nn loss visualized.md.html
izmailovpavel.github.io/curves blogpost
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Backpropagation Algorithm

Basic principle of backpropagation:
1 Compute the actual network

output for the given batch of
training samples

by a single pass from the input to
the output layer (forward pass)

2 Compare the actual and desired
outputs

3 Update the weights and biases:

in the direction opposite to the
gradient of the loss
using a single pass from the
output to the input layer
(backward pass)

1. forward pass

2. backward pass
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Python Libraries for Multi-layer Neural Networks

Main Deep Learning Frameworks in Python

TensorFlow – Open-source library by Google.
Powerful framework for AI applications (mobile, server).
Supports both static and dynamic computation graphs.

PyTorch – Open-source library by Meta (Facebook).
Flexible and intuitive, ideal for research and academia.
Dynamic computation graphs, easy debugging.

Keras – High-level universal API.
Beginner-friendly and easy to understand.
Great for fast prototyping. Runs on top of TensorFlow, JAX, or
PyTorch.

PyTorch Lightning – High-level wrapper for PyTorch.
Reduces boilerplate code in training routines.
Supports multi-GPU training, scaling, and reproducibility.

JAX – Optimized for speed and experimental research.

Previously popular Theano – now deprecated.
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Python Libraries for Multi-layer Neural Networks

Other Useful Libraries

Data manipulation and numerical computing:

Scikit-learn (sklearn) – classic ML algorithms; tools for data
processing and model evaluation.

NumPy – efficient numerical computing with arrays and
tensors.

Pandas – powerful data manipulation library for structured
data (categorical, missing values).

Visualization:

Matplotlib – general-purpose plotting (static, animated,
interactive).

Plotly – interactive visualizations.

Seaborn – statistical data visualization (correlations,
distributions, etc.).

TensorBoard – learning visualization, especially for
TensorFlow.
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Python Libraries for Multi-layer Neural Networks

This Week

1 Finalizing examples using Python frameworks for neural
networks

2 A brief overview of local library installation

3 Examples in TensorFlow Playground

4 Brief analysis of a multi-layer neural network model with the
backpropagation algorithm

5 Step-by-step example using Keras on a sample task (binary
classification). Setting hyperparameters and understanding
their impact on the training process. Using TensorBoard.
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Python Libraries for Multi-layer Neural Networks

Practical Examples

NN libraries.ipynb

Commented examples comparing major deep learning
frameworks (Keras, TensorFlow, PyTorch, Lightning) on a
simple binary classification task.

Demonstration of automatic symbolic tensor differentiation in
TensorFlow and PyTorch.

Frameworks and GPU support in practice.

NN libraries installation.ipynb

Brief installation guide for running the examples locally on
your own machine.
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https://github.com/reitezuz/18NES1-2025-/blob/8748c1037fe4221858307ab867187ce06e9650b4/week5/NN_libraries.ipynb
https://github.com/reitezuz/18NES1-2025-/blob/321d1885caaaed4295edfc9a6e0ba924263d11c7/week6/NN_libraties_installation.ipynb
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Python Libraries for Multi-layer Neural Networks

Interactive MLP Playground – Simple Visual Demos

https://playground.tensorflow.org/

Five classification tasks (of increasing difficulty – spiral is the
hardest).

You can configure network architecture and training
parameters.

Includes excellent visualizations: loss over time, weight signs
and magnitudes, neuron behavior.

Great for experimenting: how many layers and neurons are
needed for which task?

Challenge: can you train a model that solves the spiral task?
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Multi-layer Neural Network Trained via Gradient Descent – Model Analysis

Multi-layer Neural Network Trained via Gradient
Descent – Model Analysis

Advantages:

A simple and universal model with solid approximation
capabilities

Suitable for both classification and regression tasks, including
time series prediction.
Capable of capturing complex nonlinear relationships.
Generalizes well.

Uses backpropagation for efficient training via gradient
descent.

A universal approximator – capable of approximating any
continuous function (for certain nonlinear activation functions,
one or two hidden layers suffice). However, the training
problem is NP-complete.
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Multi-layer Neural Network Trained via Gradient Descent – Model Analysis

NP-completeness of the Training Problem

Theorem

The general problem of training artificial neural networks is
NP-complete. The computational complexity grows
exponentially with the number of parameters.

Remarks

1 The theorem holds even for training multi-layer neural
networks and for learning logical functions.

2 For some specific types of simple neural networks, the learning
problem is solvable in polynomial time (e.g., via linear
programming methods).

→ Therefore, we must rely on local optimization methods (e.g.,
gradient descent).

12 / 39



Neural Networks 1 - Multilayer neural networks

Multi-layer Neural Network Trained via Gradient Descent – Model Analysis

Multi-layer Neural Network Trained via Gradient
Descent – Model Analysis

Disadvantages:

The model is highly sensitive to weight initialization, training
data, and hyperparameters, which need to be carefully tuned.

Input and output data must be in vectorized numerical form.

Slow convergence – although faster variants exist (e.g., Adam
optimizer).

Local learning method – may converge to suboptimal
solutions.

Prone to overfitting – mitigated by regularization, early
stopping, etc.

No built-in mechanisms for capturing spatial data structure.

“Black box” – the internal knowledge representation (weights
and biases) is difficult for humans to interpret.
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Multi-layer Neural Network Trained via Gradient Descent – Model Analysis

Multi-layer Neural Network Trained via Gradient
Descent – Model Analysis

We want training via local (gradient-based) methods to be
successful:

Fast learning (convergence)

The ability to learn the task (correctly capture hidden
patterns in the data)

Good generalization (accurate outputs for unseen inputs)

What is essential for the success of backpropagation?

Proper preprocessing of training data

Good initialization of weights and biases (e.g., ∼ N(0, 1))

Careful tuning of hyperparameters for the specific task
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Multi-layer Neural Network Trained via Gradient Descent – Model Analysis

Example

keras simple example.ipynb

A more detailed example in Keras – step-by-step learning
procedure (on a binary classification task)

Data preprocessing and analysis. Model creation and
hyperparameter tuning. Training progress. Visualization.
Evaluation.

Hyperparameter tuning.

Visualization using TensorBoard.

We will switch between the slides and the example notebook
during the session.
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https://github.com/reitezuz/18NES1-2025-/blob/41614c923884532065c91064f8f3f9f929adcd42/week6/keras_simple_example.ipynb
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Preprocessing Training Data for MLP

Preprocessing Training Data for MLP

Key preprocessing steps:

Serialization:
Convert input and output data into 2D tensors of shape
(samples, numerical features)
Handle categorical variables (e.g., ordinal encoding, one-hot
encoding)

Ensuring data consistency:
Check that all input vectors have the same length and no
missing values.
Replace missing values using the mean, median, or more
advanced imputation techniques.
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Preprocessing Training Data for MLP

Preprocessing Training Data for MLP

Key preprocessing steps (continued):

Normalization/Standardization of inputs:
Normalization: Scale features to a fixed range, such as [0, 1]
or [-1, 1], depending on the activation function (e.g., ReLU vs.
tanh).
Standardization: Typically adjust features to have zero mean
and unit variance.
Normalization is crucial for stable and efficient training.

Training set should be sufficiently large and balanced.
In some cases, data augmentation is necessary to increase the
number of training samples.

Split data into training, validation, and test sets:
A common split is 70% training, 15% validation, and 15% test
set.
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Setting Hyperparameters of an MLP Model

Key Hyperparameters of an MLP Model

Architecture

Model size: Number of hidden layers and number of neurons
per layer
Activation functions in each layer: relu, sigmoid, tanh,
softmax, ...

Other key hyperparameters

Loss function: MSE, binary crossentropy, ...
Evaluation metrics: accuracy, MSE, precision, ...
Optimization algorithm: SGD, Adam, RMSProp, ...
Learning rate, and possibly other optimizer-specific
parameters
Batch size
Number of epochs
Weight initialization: Typically small random values
Regularization: L2, Dropout, Early stopping, ...
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Setting Hyperparameters of an MLP Model

Architecture

Architecture of a Multi-layer Neural Network

Creating a model in Keras

Sequential – the simplest way to build a model, stacking
layers sequentially.

Input – input layer (can be omitted in simple cases)

Dense – fully connected layer
Number of neurons
Activation function: activation=’relu’, ’sigmoid’, ’linear’
(default), ...
Weight initialization method:
kernel initializer=’glorot uniform’, bias initializer=’zeros’
(default), ...
Example: Dense(10, activation=’relu’,
kernel initializer=’he normal’)

Official documentation:
https://keras.io/api/layers/core layers/dense/
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Setting Hyperparameters of an MLP Model

Architecture

Architecture of a Multi-layer Neural Network

Model size: Defined by the number of layers and neurons in
each layer

How to choose model size?

Input and output layers: The number of neurons is
determined by the data shape.

Hidden layers:
Larger model = higher capacity → better at capturing
complex patterns
Small model → underfitting, cannot capture complex
relationships
Too large model with limited data → overfitting
The optimal number of layers and neurons depends on the task
complexity and data size; usually selected experimentally.
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Setting Hyperparameters of an MLP Model

Architecture

Model Size and Its Effect on MLP Performance

Practical recommendations:

Start with a smaller model and gradually increase size as
needed.

Use validation data to monitor performance and avoid
overfitting.

If overfitting occurs, apply techniques like regularization, early
stopping, or dropout.

Choose a good balance between width (neurons per layer) and
depth (number of layers).

For smaller datasets, prefer smaller models.
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Setting Hyperparameters of an MLP Model

Architecture

Architecture of a Multi-layer Neural Network

Shallow model – one hidden layer

Better suited for simpler tasks – learns faster and generalizes
well
Performs better on small datasets (large datasets may not help
much)
Easier to understand and interpret
Learns complex tasks slowly and may require many neurons

Deep model – more (or many) hidden layers

More suitable for complex tasks with large training datasets
Capable of learning intricate patterns in the data
Requires different training strategies and poses different
challenges
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Setting Hyperparameters of an MLP Model

Activation Functions

Which Activation Functions to Use?

Which activation function for the output layer?

Regression task: linear (linear)

Binary classification: sigmoid (sigmoid)

Multi-class classification: softmax

Which activation function for hidden layers?

Hyperbolic tangent (tanh) – stable, symmetric; can suffer
from saturation; popular in recurrent models

In deep networks, ReLU is commonly used – fast and
effective, but asymmetric and limited in expressive power
(saturation risk still exists)

https://keras.io/api/layers/activations/
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Setting Hyperparameters of an MLP Model

Weight and Bias Initialization

Proper Initialization of Weights and Biases

Rule of thumb:

Weights and biases should be small, random, uniformly
distributed, and centered around zero.

Why zero mean?

Ensures expected input to each neuron is centered at zero

Derivative of sigmoid/tanh is maximal near zero (∼ 0.25) →
faster learning at start

Reduces the risk of saturation

Why random?

Breaks symmetry – hidden neurons should not perform
identical computations
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Setting Hyperparameters of an MLP Model

Weight and Bias Initialization

Proper Initialization of Weights and Biases

For example, using common heuristics:

Basic idea: wij(0) ∼ N(0, 1)

Nguyen-Widrow method: distributes neuron weights more
evenly across the input space

Glorot et al. (2010): wij(0) ∼ N
(

0,
√

6
ni+nj

)
for weight matrix

of shape ni × nj ; aims to preserve output variance across layers

Recommendations:

For ReLU: He initialization (HeUniform, HeNormal) –
maintains variance of neuron outputs

For sigmoid/tanh/linear: Glorot (Xavier) initialization
(GlorotUniform, GlorotNormal)

https://keras.io/api/layers/initializers/
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Weight and Bias Initialization

The Problem of Neuron Saturation

If the weights and biases are too small, the propagated error is
also too small and the learning is very slow.
On the other hand, if the weights are too large, neurons may
become saturated:

Neurons remain constantly highly active or inactive for all
training examples, and their outputs no longer change with
input.
The derivative of the activation function is near zero.
→ Network paralysis and uncontrolled growth of weights.

How to reduce the risk of saturation?

Use ReLU instead of tanh in hidden layers
Normalize the training data; consider additional normalization
techniques (batch normalization, layer normalization)
Use proper weight initialization
Reduce the learning rate or use an optimizer with adaptive
learning rate (e.g., Adam)
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Setting Hyperparameters of an MLP Model

Weight and Bias Initialization

Model Compilation in Keras (model.compile)

Used to define how the model will learn.

Key arguments:

optimizer – the learning algorithm (e.g., ’adam’, ’sgd’, or
Adam(learning rate=0.001))

loss – loss function to be minimized during training

metrics – metrics for monitoring and evaluating model
performance (e.g., [’accuracy’], [’mae’])

Example: model.compile(optimizer=’adam’,
loss=’binary crossentropy’, metrics=[’accuracy’])
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Setting Hyperparameters of an MLP Model

Loss Function

Which Loss Function to Use?

For regression tasks:

MSE (loss=’mean squared error’)
Most commonly used loss function for regression
Sensitive to outliers

MAE (loss=’mean absolute error’) – more robust to
outliers

Huber Loss (loss=’huber’) – hybrid of MSE and MAE

...

https://keras.io/api/losses/
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Setting Hyperparameters of an MLP Model

Loss Function

Which Loss Function to Use?

For classification tasks:

Binary Crossentropy (loss = ’binary crossentropy’)
Suitable for binary classification together with a sigmoid
activation in the output layer

Categorical Crossentropy (loss =
’categorical crossentropy’)

Suitable for multi-class classification with softmax output
Assumes one-hot-encoded labels

Sparse Categorical Crossentropy (loss =
’sparse categorical crossentropy’)

Similar to categorical crossentropy but uses integer class
indices instead of one-hot encoding
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Setting Hyperparameters of an MLP Model

Evaluation Metrics

Which Metric to Use for Model Evaluation?

Classification:

Accuracy – proportion of correctly classified samples
Binary classification: accuracy, binary accuracy
Multi-class classification: categorical accuracy (for one-hot
labels), sparse categorical accuracy (for integer labels)

Other metrics for binary classification:
AUC – area under the ROC curve; useful for imbalanced
datasets
Precision, Recall, F1 – useful when minimizing false positives
or false negatives

Regression:

mean squared error (MSE) – for typical regression tasks

mean absolute error (MAE) – better when data contains
outliers

https://keras.io/api/metrics/
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Setting Hyperparameters of an MLP Model

Evaluation Metrics

Which Metric to Use for Model Evaluation?

Source: https://en.wikipedia.org/wiki/Precision and recall, license CC0
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Setting Hyperparameters of an MLP Model

Learning Algorithm (Optimizer)

Optimizers for Deep Neural Networks

Based on gradient descent; often use adaptive and local
learning rates

SGD (Stochastic Gradient Descent) – basic optimizer, uses
mini-batches; stable
Adam – currently the most popular; adaptive learning rate;
faster convergence
RMSprop – suitable for sequential and online data
AdaGrad, Adadelta, AdaMax, NAdam, FTRL, ...

Each optimizer has additional hyperparameters (e.g., SGD:
learning rate, momentum, nesterov)
In most cases, the default settings work well.

https://keras.io/api/optimizers/
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Setting Hyperparameters of an MLP Model

Learning Algorithm (Optimizer)

Choosing the Right Learning Rate

For SGD, setting the learning rate correctly is crucial.

It controls how quickly the model learns.

How to choose the learning rate?

Too small → slow learning, risk of getting stuck in a local
minimum

Too large → unstable learning, risk of overshooting the
minimum and oscillations

What helps?

Tuning the learning rate for your specific task

Using momentum (momentum, nesterov)

Using adaptive optimizers (Adam, RMSprop)

→ More on optimizers in the next lecture
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Setting Hyperparameters of an MLP Model

Other Key Hyperparameters for MLP

Training the Model in Keras (model.fit)

Key arguments:

x, y – input patterns and desired outputs

batch size – number of samples processed at once (e.g., 32)

epochs – number of passes through the entire dataset

validation data – validation set, e.g., (x val, y val)

callbacks – functions called during training (e.g.,
EarlyStopping)

shuffle=True – shuffle the data before each epoch

Example:
model.fit(x train, y train, batch size=32, epochs=10,

validation data=(x val, y val), shuffle=True)

Documentation:
https://keras.io/api/models/model training apis/#fit-method
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Setting Hyperparameters of an MLP Model

Other Key Hyperparameters for MLP

Other Key Hyperparameters for MLP

Batch size – number of samples in one mini-batch

Typically a power of 2 (8, 16, 32, 64, ...)
Small batches: slower, less stable learning; often better
generalization
Large batches (512+): faster training, higher memory usage,
increased risk of overfitting
Recommendation: Use smaller batches for small datasets. For
large datasets, use the largest possible batch size that fits in
memory, while monitoring generalization.

Number of epochs
Determined experimentally; use early stopping to avoid
overfitting
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Setting Hyperparameters of an MLP Model

Callbacks in Keras

Callbacks in Keras

Functions called during model training
→ enable monitoring, model saving, early stopping, etc.

Most commonly used callbacks:

EarlyStopping – stops training when validation performance
stops improving
ModelCheckpoint – saves the best model based on a chosen
metric
ReduceLROnPlateau – reduces the learning rate when a
metric has stopped improving
TensorBoard – logs training metrics for interactive
visualization

Usage: see example in notebook

Documentation:
https://keras.io/api/callbacks/
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Setting Hyperparameters of an MLP Model

Callbacks in Keras

Keras Model – Evaluation, Prediction, Saving and
Loading

evaluate() – evaluate model performance on test data

Returns a tuple of loss and metrics values:
loss, accuracy = model.evaluate(x test, y test)

predict() – compute model outputs

Example for classification:
y pred = model.predict(x test)

save() – save the model to a file

model.save("model.keras")

load model() – load a saved model

model = load model("model.keras")
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Setting Hyperparameters of an MLP Model

Callbacks in Keras

TensorBoard

A tool for visualizing training and evaluation of neural
networks.
Displays loss curves, metrics, model graph, weight
distributions, and more.
Enables real-time monitoring during training.
Supports comparison of multiple model runs.

Usage in Keras:

from keras.callbacks import TensorBoard

log_dir = "logs/fit/" + ...

tensorboard_callback = TensorBoard(log_dir=log_dir,...)

model.fit(..., callbacks=[tensorboard_callback,...])

Run from terminal:
tensorboard --logdir=logs/fit

Documentation: tensorflow.org/tensorboard 38 / 39
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Practical Examples of Different Task Types

Example

keras simple example.ipynb

Experiment with how changing various hyperparameters
(architecture, optimizer, etc.) affects the learning process and
performance.

The notebook includes suggestions for what to try.

Try out TensorBoard – optionally also run it locally on your
own computer.

Optionally modify the code and try training an MLP on other
datasets from the scikit-learn dataset repository (e.g., iris,
diabetes, wine).

39 / 39

https://github.com/reitezuz/18NES1-2025-/blob/41614c923884532065c91064f8f3f9f929adcd42/week6/keras_simple_example.ipynb
https://scikit-learn.org/stable/api/sklearn.datasets.html
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