Neural Networks 1 - Multilayer neural networks 18NES1 - Lecture 6, Summer semester 2024/25

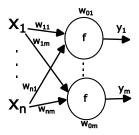
Zuzana Petříčková

April 1st, 2025

What We Covered Last Time

Single-layer neural network

- Multivariate linear regression (linear neural network)
- Multiclass linear classification / pattern recognition (single-layer perceptron)



- Multi-layer neural network (MLP)
- Backpropagation algorithm

Multi-Layer Neural Network (Multi-Layer Perceptron, MLP, 1980)

- Hierarchical **sequential** architecture: neurons are arranged in layers
- Dense (fully connected) layers: every neuron in one layer is connected to every neuron in the next layer

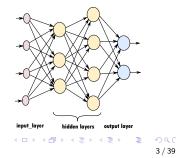
Special input layer:

• corresponds to the inputs of the neural network

Output layer:

• the output (response) of the network corresponds to the activations of the output neurons

The remaining layers are hidden layers.



Backpropagation Algorithm

Core principle: it is a standard gradient descent method

- Q Randomly initialize the model parameters (weights and biases)
- Provide the second s
 - Prepare a batch of input samples X and their corresponding target outputs D
 - Compute the model's actual outputs Y
 - Compute the model error (difference between Y and D)
 - Update parameters (weights and biases) to slightly reduce the error (i.e., move in the opposite direction of the loss gradient):

$$w_i(t+1) = w_i(t) - \alpha_t \frac{\partial E_t}{\partial w_i}$$

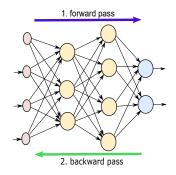
Nice visualizations of loss surfaces:

jithinjk.github.io/blog/nn_loss_visualized.md.html izmailovpavel.github.io/curves_blogpost

Backpropagation Algorithm

Basic principle of backpropagation:

- Compute the actual network output for the given batch of training samples
 - by a single pass from the input to the output layer (forward pass)
- Compare the actual and desired outputs
- Opdate the weights and biases:
 - in the direction opposite to the gradient of the loss
 - using a single pass from the output to the input layer (backward pass)



イロト イボト イヨト イヨト

Main Deep Learning Frameworks in Python

- TensorFlow Open-source library by Google.
 - Powerful framework for AI applications (mobile, server).
 - Supports both static and dynamic computation graphs.
- **PyTorch** Open-source library by Meta (Facebook).
 - Flexible and intuitive, ideal for research and academia.
 - Dynamic computation graphs, easy debugging.
- Keras High-level universal API.
 - Beginner-friendly and easy to understand.
 - Great for fast prototyping. Runs on top of TensorFlow, JAX, or PyTorch.
- **PyTorch Lightning** High-level wrapper for PyTorch.
 - Reduces boilerplate code in training routines.
 - Supports multi-GPU training, scaling, and reproducibility.
- JAX Optimized for speed and experimental research.
- Previously popular **Theano** now deprecated.

Other Useful Libraries

Data manipulation and numerical computing:

- Scikit-learn (sklearn) classic ML algorithms; tools for data processing and model evaluation.
- **NumPy** efficient numerical computing with arrays and tensors.
- **Pandas** powerful data manipulation library for structured data (categorical, missing values).

Visualization:

- **Matplotlib** general-purpose plotting (static, animated, interactive).
- **Plotly** interactive visualizations.
- **Seaborn** statistical data visualization (correlations, distributions, etc.).
- TensorBoard learning visualization, especially for TensorFlow.

This Week

- Finalizing examples using Python frameworks for neural networks
- 2 A brief overview of local library installation
- Second Second
- Brief analysis of a multi-layer neural network model with the backpropagation algorithm
- Step-by-step example using Keras on a sample task (binary classification). Setting hyperparameters and understanding their impact on the training process. Using TensorBoard.

Practical Examples

NN_libraries.ipynb

- Commented examples comparing major deep learning frameworks (Keras, TensorFlow, PyTorch, Lightning) on a simple binary classification task.
- Demonstration of automatic symbolic tensor differentiation in TensorFlow and PyTorch.
- Frameworks and GPU support in practice.

NN_libraries_installation.ipynb

• Brief installation guide for running the examples locally on your own machine.

Interactive MLP Playground – Simple Visual Demos

https://playground.tensorflow.org/

- Five classification tasks (of increasing difficulty spiral is the hardest).
- You can configure network architecture and training parameters.
- Includes excellent visualizations: loss over time, weight signs and magnitudes, neuron behavior.
- Great for experimenting: how many layers and neurons are needed for which task?
- Challenge: can you train a model that solves the spiral task?

Multi-layer Neural Network Trained via Gradient Descent – Model Analysis

Advantages:

- A simple and **universal** model with solid approximation capabilities
 - Suitable for both classification and regression tasks, including time series prediction.
 - Capable of capturing complex nonlinear relationships.
 - Generalizes well.
- Uses backpropagation for efficient training via gradient descent.
- A universal approximator capable of approximating any continuous function (for certain nonlinear activation functions, one or two hidden layers suffice). However, the training problem is NP-complete.

NP-completeness of the Training Problem

Theorem

• The general problem of training artificial neural networks is NP-complete. The computational complexity grows exponentially with the number of parameters.

Remarks

- The theorem holds even for training multi-layer neural networks and for learning logical functions.
- For some specific types of simple neural networks, the learning problem is solvable in polynomial time (e.g., via linear programming methods).

 \rightarrow Therefore, we must rely on local optimization methods (e.g., gradient descent).

Multi-layer Neural Network Trained via Gradient Descent – Model Analysis

Disadvantages:

- The model is highly sensitive to weight initialization, training data, and hyperparameters, which need to be carefully tuned.
- Input and output data must be in vectorized numerical form.
- Slow convergence although faster variants exist (e.g., Adam optimizer).
- Local learning method may converge to suboptimal solutions.
- Prone to overfitting mitigated by regularization, early stopping, etc.
- No built-in mechanisms for capturing spatial data structure.
- "Black box" the internal knowledge representation (weights and biases) is difficult for humans to interpret.

Multi-layer Neural Network Trained via Gradient Descent – Model Analysis

We want training via local (gradient-based) methods to be successful:

- Fast learning (convergence)
- The ability to learn the task (correctly capture hidden patterns in the data)
- Good generalization (accurate outputs for unseen inputs)

What is essential for the success of backpropagation?

- Proper preprocessing of training data
- Good initialization of weights and biases (e.g., $\sim N(0,1))$
- Careful tuning of hyperparameters for the specific task

Example

keras_simple_example.ipynb

- A more detailed example in Keras step-by-step learning procedure (on a binary classification task)
- Data preprocessing and analysis. Model creation and hyperparameter tuning. Training progress. Visualization. Evaluation.
- Hyperparameter tuning.
- Visualization using TensorBoard.

We will switch between the slides and the example notebook during the session.

Neural Networks 1 - Multilayer neural networks Preprocessing Training Data for MLP

Preprocessing Training Data for MLP

Key preprocessing steps:

- Serialization:
 - Convert input and output data into 2D tensors of shape (samples, numerical features)
 - Handle categorical variables (e.g., ordinal encoding, one-hot encoding)

• Ensuring data consistency:

- Check that all input vectors have the same length and no missing values.
- Replace missing values using the mean, median, or more advanced imputation techniques.

Neural Networks 1 - Multilayer neural networks Preprocessing Training Data for MLP

Preprocessing Training Data for MLP

Key preprocessing steps (continued):

- Normalization/Standardization of inputs:
 - Normalization: Scale features to a fixed range, such as [0, 1] or [-1, 1], depending on the activation function (e.g., ReLU vs. tanh).
 - **Standardization**: Typically adjust features to have zero mean and unit variance.
 - Normalization is crucial for stable and efficient training.

• Training set should be sufficiently large and balanced.

- In some cases, data augmentation is necessary to increase the number of training samples.
- Split data into training, validation, and test sets:
 - A common split is 70% training, 15% validation, and 15% test set.

Key Hyperparameters of an MLP Model

Architecture

- **Model size:** Number of hidden layers and number of neurons per layer
- Activation functions in each layer: relu, sigmoid, tanh, softmax, ...

Other key hyperparameters

- Loss function: MSE, binary crossentropy, ...
- Evaluation metrics: accuracy, MSE, precision, ...
- Optimization algorithm: SGD, Adam, RMSProp, ...
- Learning rate, and possibly other optimizer-specific parameters
- Batch size
- Number of epochs
- Weight initialization: Typically small random values
- Regularization: L2, Dropout, Early stopping, and the second sec

Architecture of a Multi-layer Neural Network

Creating a model in Keras

- Sequential the simplest way to build a model, stacking layers sequentially.
- Input input layer (can be omitted in simple cases)
- Dense fully connected layer
 - Number of neurons
 - Activation function: activation='relu', 'sigmoid', 'linear' (default), ...
 - Weight initialization method: kernel_initializer='glorot_uniform', bias_initializer='zeros' (default), ...
 - Example: Dense(10, activation='relu', kernel_initializer='he_normal')

Official documentation:

https://keras.io/api/layers/core_layers/dense/

Architecture of a Multi-layer Neural Network

• **Model size:** Defined by the number of layers and neurons in each layer

How to choose model size?

• **Input and output layers:** The number of neurons is determined by the data shape.

• Hidden layers:

- Larger model = higher capacity \rightarrow better at capturing complex patterns
- $\bullet~Small~model \rightarrow~underfitting,$ cannot capture complex relationships
- $\bullet\,$ Too large model with limited data $\rightarrow\,$ overfitting
- The optimal number of layers and neurons depends on the task complexity and data size; usually selected experimentally.

Model Size and Its Effect on MLP Performance

Practical recommendations:

- Start with a smaller model and gradually increase size as needed.
- Use validation data to monitor performance and avoid overfitting.
- If overfitting occurs, apply techniques like regularization, early stopping, or dropout.
- Choose a good balance between width (neurons per layer) and depth (number of layers).
- For smaller datasets, prefer smaller models.

Architecture of a Multi-layer Neural Network

- Shallow model one hidden layer
 - Better suited for simpler tasks learns faster and generalizes well
 - Performs better on small datasets (large datasets may not help much)
 - Easier to understand and interpret
 - Learns complex tasks slowly and may require many neurons
- Deep model more (or many) hidden layers
 - More suitable for complex tasks with large training datasets
 - Capable of learning intricate patterns in the data
 - Requires different training strategies and poses different challenges

Which Activation Functions to Use?

Which activation function for the output layer?

- Regression task: linear (linear)
- Binary classification: sigmoid (sigmoid)
- Multi-class classification: softmax

Which activation function for hidden layers?

- Hyperbolic tangent (tanh) stable, symmetric; can suffer from saturation; popular in recurrent models
- In deep networks, ReLU is commonly used fast and effective, but asymmetric and limited in expressive power (saturation risk still exists)

https://keras.io/api/layers/activations/

Proper Initialization of Weights and Biases

Rule of thumb:

• Weights and biases should be small, random, uniformly distributed, and centered around zero.

Why zero mean?

- Ensures expected input to each neuron is centered at zero
- Derivative of sigmoid/tanh is maximal near zero (\sim 0.25) \rightarrow faster learning at start
- Reduces the risk of saturation

Why random?

Breaks symmetry – hidden neurons should not perform identical computations

Proper Initialization of Weights and Biases

For example, using common heuristics:

- Basic idea: $w_{ij}(0) \sim N(0,1)$
- Nguyen-Widrow method: distributes neuron weights more evenly across the input space
- Glorot et al. (2010): $w_{ij}(0) \sim N\left(0, \sqrt{\frac{6}{n_i+n_j}}\right)$ for weight matrix of shape $n_i \times n_j$; aims to preserve output variance across layers **Recommendations:**
 - For ReLU: He initialization (HeUniform, HeNormal) maintains variance of neuron outputs
 - For sigmoid/tanh/linear: Glorot (Xavier) initialization (GlorotUniform, GlorotNormal)

https://keras.io/api/layers/initializers/

The Problem of Neuron Saturation

- If the weights and biases are too small, the propagated error is also too small and the learning is very slow.
- On the other hand, if the weights are too large, neurons may become **saturated**:
 - Neurons remain constantly highly active or inactive for all training examples, and their outputs no longer change with input.

The derivative of the activation function is near zero.

 \rightarrow Network paralysis and uncontrolled growth of weights.

How to reduce the risk of saturation?

- Use ReLU instead of tanh in hidden layers
- Normalize the training data; consider additional normalization techniques (batch normalization, layer normalization)
- Use proper weight initialization
- Reduce the learning rate or use an optimizer with adaptive learning rate (e.g., Adam)

Model Compilation in Keras (model.compile)

Used to define how the model will learn.

Key arguments:

- optimizer the learning algorithm (e.g., 'adam', 'sgd', or Adam(learning_rate=0.001))
- loss loss function to be minimized during training
- **metrics** metrics for monitoring and evaluating model performance (e.g., ['accuracy'], ['mae'])

Example: model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Loss Function

Which Loss Function to Use?

For regression tasks:

- MSE (loss='mean_squared_error')
 - Most commonly used loss function for regression
 - Sensitive to outliers
- MAE (loss='mean_absolute_error') more robust to outliers
- Huber Loss (loss='huber') hybrid of MSE and MAE

https://keras.io/api/losses/

o ...

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Loss Function

Which Loss Function to Use?

For classification tasks:

- Binary Crossentropy (loss = 'binary_crossentropy')
 - Suitable for binary classification together with a sigmoid activation in the output layer
- Categorical Crossentropy (loss = 'categorical_crossentropy')
 - Suitable for multi-class classification with softmax output
 - Assumes one-hot-encoded labels
- Sparse Categorical Crossentropy (loss = 'sparse_categorical_crossentropy')
 - Similar to categorical crossentropy but uses integer class indices instead of one-hot encoding

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Evaluation Metrics

Which Metric to Use for Model Evaluation?

Classification:

- Accuracy proportion of correctly classified samples
 - Binary classification: accuracy, binary_accuracy
 - Multi-class classification: categorical_accuracy (for one-hot labels), sparse_categorical_accuracy (for integer labels)
- Other metrics for binary classification:
 - AUC area under the ROC curve; useful for imbalanced datasets
 - **Precision**, **Recall**, **F1** useful when minimizing false positives or false negatives

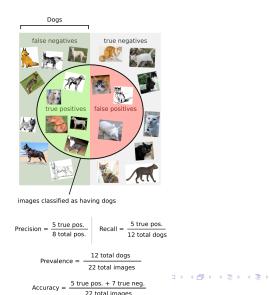
Regression:

- mean_squared_error (MSE) for typical regression tasks
- mean_absolute_error (MAE) better when data contains outliers

https://keras.io/api/metrics/

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Evaluation Metrics

Which Metric to Use for Model Evaluation?



31 / 39

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Learning Algorithm (Optimizer)

Optimizers for Deep Neural Networks

- Based on gradient descent; often use adaptive and local learning rates
 - SGD (Stochastic Gradient Descent) basic optimizer, uses mini-batches; stable
 - Adam currently the most popular; adaptive learning rate; faster convergence
 - RMSprop suitable for sequential and online data
 - AdaGrad, Adadelta, AdaMax, NAdam, FTRL, ...
- Each optimizer has additional hyperparameters (e.g., SGD: learning_rate, momentum, nesterov)

In most cases, the default settings work well.

https://keras.io/api/optimizers/

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Learning Algorithm (Optimizer)

Choosing the Right Learning Rate

- For SGD, setting the learning rate correctly is crucial.
- It controls how quickly the model learns.

How to choose the learning rate?

- $\bullet~{\rm Too~small} \to {\rm slow}$ learning, risk of getting stuck in a local minimum
- $\bullet\,$ Too large $\to\,$ unstable learning, risk of overshooting the minimum and oscillations

What helps?

- Tuning the learning rate for your specific task
- Using momentum (momentum, nesterov)
- Using adaptive optimizers (Adam, RMSprop)
- \rightarrow More on optimizers in the next lecture

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Other Key Hyperparameters for MLP

Training the Model in Keras (model.fit)

Key arguments:

- x, y input patterns and desired outputs
- batch_size number of samples processed at once (e.g., 32)
- epochs number of passes through the entire dataset
- validation_data validation set, e.g., (x_val, y_val)
- callbacks functions called during training (e.g., EarlyStopping)
- shuffle=True shuffle the data before each epoch

Example:

model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_val, y_val), shuffle=True)

Documentation:

https://keras.io/api/models/model_training_apis/#fit-method

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Other Key Hyperparameters for MLP

Other Key Hyperparameters for MLP

- Batch size number of samples in one mini-batch
 - Typically a power of 2 (8, 16, 32, 64, ...)
 - Small batches: slower, less stable learning; often better generalization
 - Large batches (512+): faster training, higher memory usage, increased risk of overfitting
 - **Recommendation:** Use smaller batches for small datasets. For large datasets, use the largest possible batch size that fits in memory, while monitoring generalization.

Number of epochs

• Determined experimentally; use early stopping to avoid overfitting

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Callbacks in Keras

Callbacks in Keras

Functions called during model training

 \rightarrow enable monitoring, model saving, early stopping, etc.

Most commonly used callbacks:

- **EarlyStopping** stops training when validation performance stops improving
- ModelCheckpoint saves the best model based on a chosen metric
- ReduceLROnPlateau reduces the learning rate when a metric has stopped improving
- **TensorBoard** logs training metrics for interactive visualization

Usage: see example in notebook

Documentation:

https://keras.io/api/callbacks/

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Callbacks in Keras

Keras Model – Evaluation, Prediction, Saving and Loading

evaluate() - evaluate model performance on test data

• Returns a tuple of loss and metrics values:

loss, accuracy = model.evaluate(x_test, y_test)

- predict() compute model outputs
 - Example for classification:

y_pred = model.predict(x_test)

save() - save the model to a file

o model.save("model.keras")

load_model() - load a saved model

• model = load_model("model.keras")

Neural Networks 1 - Multilayer neural networks Setting Hyperparameters of an MLP Model Callbacks in Keras

TensorBoard

- A tool for visualizing training and evaluation of neural networks.
- Displays loss curves, metrics, model graph, weight distributions, and more.
- Enables real-time monitoring during training.
- Supports comparison of multiple model runs.

Usage in Keras:

```
from keras.callbacks import TensorBoard
log_dir = "logs/fit/" + ...
tensorboard_callback = TensorBoard(log_dir=log_dir,...)
model.fit(..., callbacks=[tensorboard_callback,...])
```

Run from terminal:

tensorboard --logdir=logs/fit Documentation: tensorflow.org/tensorboard Neural Networks 1 - Multilayer neural networks Practical Examples of Different Task Types

Example

keras_simple_example.ipynb

- Experiment with how changing various hyperparameters (architecture, optimizer, etc.) affects the learning process and performance.
- The notebook includes suggestions for what to try.
- Try out TensorBoard optionally also run it locally on your own computer.
- Optionally modify the code and try training an MLP on other datasets from the scikit-learn dataset repository (e.g., **iris**, **diabetes**, **wine**).