
Neural Networks 1 - Single-layer and multilayer neural networks

Review - Neurons with Continuous Activation Functions

Neural Networks 1 - Single-layer and multilayer
neural networks

18NES1 - Lecture 5, Summer semester 2024/25

Zuzana Peťŕıčková

March 25, 2025

1 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Review - Neurons with Continuous Activation Functions

What We Covered Last Time

1 Most common continuous activation functions for
neurons

Linear (identity) function

Task: Linear regression

y

y = w1.x1 + w0

x-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

Sigmoid, hyperbolic
tangent

Task: Linear classification

x2

w1.x1 +w2x2 + w0 = 0

x1-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

2 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Review - Neurons with Continuous Activation Functions

What We Covered Last Time

2 Gradient-based learning for l neurons with continuous
and differentiable activation functions

1 Initialize weights with small random real values:
~w(0) = (w0,w1, ...,wn)T

Initialize the learning rate: α0 where 1 > α0 > 0
2 Present the next training sample (~xt , dt) and compute the

neuron’s potential and actual output:
ξt = ~xt ~w
yt = f (ξt)

3 Update the weights (in the opposite direction of the error
gradient):

~w(t + 1) = ~w(t)− α∂Ep

∂wi
= ~w(t) + αt f

′(ξt)(dt − yt)~x
T
t

(for the SSE loss function)
4 Optionally update the learning rate: αt → αt+1

5 If not finished, go back to step 2.
3 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Review - Neurons with Continuous Activation Functions

What We Covered Last Time

2 Gradient-based learning for general neurons with
continuous and differentiable activation functions

Sum of Squared Errors (SSE) loss function:

E (~w) =
1

2

N∑
p=1

(dp−yp)2 =
1

2

N∑
p=1

(
dp − f

(
n∑

i=0

wixpi

))2

=
N∑

p=1

Ep(~w)

Partial derivative:
∂Ep

∂wi
=
∂Ep

∂yp
· ∂yp
∂ξp
· ∂ξp
∂wi

= −(dp − yp) · f ′(ξp) · xpi

Weight update rule (after presenting the p-th sample at time t):

wi (t + 1) = wi (t)− α∂Ep

∂wi
= wi (t) + αf ′(ξp)(dp − yp)xpi

In vector form:

~w(t + 1) = ~w(t)− α∇Ep(~w) = ~w(t) + α(dp − yp)f ′(ξp)~xTp 4 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Review - Neurons with Continuous Activation Functions

What We Covered Last Time

Cross-Entropy Loss Function

Particularly suitable for linear classification combined with
sigmoid or tanh activation.
Strongly penalizes low probabilities for the correct class.
For the sigmoid function, for example:

E = −
∑
p

(dp log yp + (1− dp) log(1− yp))

The gradient with respect to the output is:
∂Ep

∂yp
= −dp

yp
+

(1−dp)
1−yp

Substituting into the weight update rule leads to beneficial
simplification:

∂Ep

∂wi
=
∂Ep

∂yp
·∂yp
∂ξp
·∂ξp
∂wi

=

(
1− dp
1− yp

− dp
yp

)
yp(1−yp)xpi = (yp−dp)xpi

→ More efficient learning and reduced risk of neuron saturation
5 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Review - Neurons with Continuous Activation Functions

What We Covered Last Time

3 Preprocessing of Categorical Data

Ordinal (Label) Encoding
Used for ordered categories (e.g., low, medium, high) or for
binary categories (e.g., left, right), which are converted to
numbers and optionally normalized:

Low = -1, Medium = 0, High = 1
Left = -1, Right = 1

One-Hot Encoding
Used for nominal (unordered) categories such as car color or
animal type. Converted to a binary representation (one feature
becomes as many columns as there are categories), and
optionally normalized:

Red→ [1,−1,−1], Blue→ [−1, 1,−1], Green→ [−1,−1, 1]

Embeddings

Used for capturing complex relationships between categorical
values, such as in word or sentence representations in natural
language. 6 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Today’s Class

1 Neural network consisting of a single layer of neurons

2 Neural network with multiple layers of neurons – Introduction

7 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

1 Neurons with a linear activation function
→ Multivariate Linear Regression

Linear neural network

2 Neurons with logistic or tanh activation function
→ Multi-class Linear Classification (Pattern Recognition
Task)

Single-layer perceptron

8 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

Motivating Example: Multi-class Classification and
Categorical Features

Size Fur Talks? Class
Small Short No Cat
Large Long No Dog
Small None Yes Parrot

Medium Short No Cat
... ...

Size Fur Talks? Cat Dog Parrot Carp
-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1
...

Example notebook: categorical values.ipynb
9 / 72

https://github.com/reitezuz/18NES1-2025-/blob/main/week4/categorical_values.ipynb

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

Example: Multi-Class Classification with Categorical Features
Size Fur Speaks? Cat Dog Parrot Carp

-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1
...

How do we train the model?
1 Train a separate neuron for each category (one at a time) and

merge the results...

Size Fur Speaks? Cat
-1 0 -1 1
0 1 -1 -1
-1 -1 1 -1
0 0 -1 1
... ...

10 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

Example: Multi-Class Classification with Categorical Features
Size Fur Speaks? Cat Dog Parrot Carp

-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1
...

How do we train the model?

2 Better approach: Construct a neural network with a single
layer of neurons and train it all at once.

11 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

The model is represented by the weight matrix:

W =

 w01 w02 ... w0m

...
wn1 wn2 ... wnm


Each neuron corresponds to one column of the matrix.
The first row corresponds to biases (alternativelly, bias vector
can be represented separately).

12 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

W =

 w01 w02 ... w0m

...
wn1 wn2 ... wnm


If individual neurons have an activation function f : R → R,
we define: f (~ξ) = (f (ξ1), ..., f (ξN))T

Model output:
~y = f (~ξ) = f (~xW)

Training set format: T = (X ,D)
x10 = 1 x11 ... x1n d11 ... d1m

...
xN0 = 1 xN1 ... xNn dN1 ... dNm

Y = f (Ξ) = f (XW)

13 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

1 Neurons with a linear activation function
→ Multidimensional Linear Regression

Linear neural network

2 Neurons with logistic or tanh activation function
→ Linear classification into multiple classes (pattern
recognition task)

Single-layer perceptron

14 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Linear Neural Network

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

Composed of a single layer of linear neurons (adding more
layers would provide no additional benefit - worth considering).
Multidimensional linear regression.
Model output:

Y = XW

Training using the Least Squares (LSQ) Method

W = (XTX)−1XTD

Training using Gradient Descent
15 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

Training Using Gradient Descent - Different Strategies:

1 In each step, update the weights of only one randomly chosen
neuron.

2 Simultaneously update the weight vectors of all neurons.

16 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

Training Using Gradient Descent ... e.g., SSE Loss Function

ESSE (W) =
m∑
j=1

ESSE (~wj) =
1

2

m∑
j=1

N∑
p=1

(dpj − ypj)
2

=
1

2

m∑
j=1

N∑
p=1

(
dpj − f

(
n∑

i=0

wijxpi

))2

=
N∑

p=1

Ep(W)

Ep(W) =
1

2

m∑
j=1

(dpj − ypj)
2 (error function for a single sample)

Partial Derivatives:
∂Ep

∂wij
=
∂Ep

∂ypj

∂ypj
∂ξpj

∂ξpj
∂wij

= −(dpj − ypj)f
′(ξpj)xpi

17 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

Training Using Gradient Descent

Update rule for a single weight:

wij(t + 1) = wij(t) + αt(dtj − ytj)f
′(ξtj)xti

Update rule for a single neuron with weight vector ~wj :

~wj(t + 1) = ~wj(t) + αt(dtj − ytj)f
′(ξtj)~x

T
t

Update rule for a single layer of neurons with weight matrix
W :

W (t + 1) = W (t) + αt~x
T
t [f ′(~ξt) ◦ (~dt − ~yt)]

Highly efficient computation.
◦ ... Hadamard (element-wise) product of vectors.

18 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

Training Using Gradient Descent

Update rule for a single layer of neurons with weight matrix
W :

W (t + 1) = W (t) + αt~x
T
t [f ′(~ξt) ◦ (~dt − ~yt)]

Highly efficient computation.
◦ ... Hadamard (element-wise) product of vectors.

Update rule for the batch version:

Xit = XW

Yt = f (Xit)

W (t + 1) = W (t) + αtX
T
t [f ′(Xit) ◦ (Dt − Yt)]

Even more efficient computation.

19 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

General Gradient Descent Algorithm (GD)

1 Initialize weights with small random real values W (0) with
shape (n + 1)×m
Initialize learning rate parameter α0.... 1 > α0 > 0

2 Present the next training sample (~xt , ~dt) and compute the
potential and actual model output:

~ξt = ~xtW

~yt = f (~ξt)

3 Update weights:

W (t + 1) = W (t) + αt~x
T
t [f ′(~ξt) ◦ (~dt − ~yt)]

4 Optionally update the learning rate: αt → αt+1

5 If the stopping condition is not met, return to step 2. 20 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

General Batch Gradient Descent Algorithm (Batch GD)

1 Initialize weights with small random real values W (0) with
shape (n + 1)×m
Initialize learning rate parameter α0.... 1 > α0 > 0

2 Present the training set X and compute the potential and
actual model output:

Xit = XW

Yt = f (Xit)

3 Update weights:

W (t + 1) = W (t) + αtX
T
t [f ′(Xit) ◦ (Dt − Yt)]

4 Optionally update the learning rate: αt → αt+1

5 If the stopping condition is not met, return to step 2.

perceptron layer.ipynb
21 / 72

https://github.com/reitezuz/18NES1-2025-/blob/main/week4/perceptron_layer.ipynb

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Multidimensional Linear Regression

Multidimensional Linear Regression

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

Model: A neural network consisting of a single layer of linear
neurons (adding more layers would not provide any benefit -
worth considering).
Loss function for training using gradient descent: SSE (sum
squared error), SAE (sum absolute error, suitable for data
with outliers).

Atm.Pressure Wind Intensity Temperature Precipitation Risk
-1.3 -0.5 -0.2 0.9
... 22 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Linear Classification (Pattern Recognition)

Linear Classification into Multiple Classes (Pattern
Recognition)

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

Model: A single layer of neurons with the tanh activation
function or sigmoid (if using sigmoid, the target outputs must
be binary-coded).
Loss function for training using gradient descent: SSE,
cross-entropy (lower risk of neuron saturation).
Evaluation metrics: e.g., accuracy - percentage of correctly
classified samples.

Size Fur Speaks? Cat Dog Parrot Carp
-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
...

23 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Linear Classification (Pattern Recognition)

Linear Classification into Multiple Classes (Pattern
Recognition)

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

The number of neurons in the network is chosen to be the
same as the number of classes.
Each neuron learns to recognize patterns from one specific
class.

How to determine the winning class?

by choosing the class with the highest output (argmax), or
by applying a softmax activation to convert the outputs into
class probabilities. 24 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Linear Classification (Pattern Recognition)

Linear Classification into Multiple Classes (Pattern
Recognition)

How to determine the winning class?

argmax:
kmax = argmaxk yk

... returns index of the class with the highest output

Softmax - for continuous activation functions: computes
the probability distribution over classes:

softmax(yk) =
eyk∑m
j=1 e

yj

In libraries, softmax is often implemented as a special fully
connected output layer.

25 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Linear Classification (Pattern Recognition)

Cross-Entropy for Multiple Classes

Cross-Entropy Loss Function for Multi-Class Classification:

Used for classification into multiple classes in combination
with softmax output.

E = −
N∑

p=1

m∑
j=1

dpj log ypj (1)

dpj is the desired output (1 for the correct class, otherwise 0).

ypj is the probability of class j obtained from softmax.

Gradient of the loss function with respect to weights:

∂Ep

∂wij
= (ypj − dpj)xpi (2)

→ More efficient training, natural interpretation as the negative
log probability of the correct class.

26 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Linear Classification (Pattern Recognition)

Examples

perceptron layer.ipynb

Example implementation of a single-layer neural network.

Simple example: Gallbladder (Example 1) extended with
additional output variables.

Observation: The gradient method handles the task, although
training takes longer and tuning the hyperparameters is more
challenging.

More complex example: Letter recognition.

Observations: Here, the advantage of cross-entropy loss over
SSE becomes apparent.
We can observe jumps in the loss function and neuron
saturation with SSE.
Batch training is significantly more efficient than iterative
training.

27 / 72

https://github.com/reitezuz/18NES1-2025-/blob/main/week4/perceptron_layer.ipynb

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Linear Classification (Pattern Recognition)

Today’s Class

1 Neural network consisting of a single layer of neurons

2 Neural network with multiple layers of neurons –
Introduction

28 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Multi-Layer Neural Network (Multi-Layer Perceptron,
MLP, 1980)

Hierarchical sequential architecture: neurons are arranged in
layers

Dense (fully connected) layers: every neuron in one layer is
connected to every neuron in the next layer

Special input layer:

corresponds to the inputs of the
neural network

Output layer:

the output (response) of the
network corresponds to the
activations of the output neurons

The remaining layers are hidden layers.
output layerinput_layer hidden layers

29 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

input
layer

single-layer
neural network

linear areas

two-layer
neural network

convex areas

three-layer
neural network

general areas

Multilayer neural network with non-linear (a.g., tanh) activations

Source: E. Volná: Neuronové śıtě 1, Ostrava, 2008

30 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

XOR wrapping

around areas
general
areasone layer

two layers

three layers

Multilayer Perceptron

Source: E. Volná: Neuronové śıtě 1, Ostrava, 2008 31 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

Source: K. Horaisová, Neural Networks 2, FNSPE CTU Děč́ın
32 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

Source: K. Horaisová, Neural Networks 2, FNSPE CTU Děč́ın

33 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

input layer hidden layer hidden layer output layer

Source: K. Horaisová, Neural Networks 2, FNSPE CTU Děč́ın

34 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

→ For general classification tasks, it is sufficient to use a neural
network with two hidden layers and one output layer.

All layers with non-linear activations

What about multi-layer linear networks?

Stacking linear layers has no benefit — a composition of linear
transformations is equivalent to a single linear layer.

Can an MLP be used for regression tasks?

Yes — the output layer is typically linear in that case.

To capture non-linear dependencies, the hidden layers must
use non-linear activation functions (e.g., ReLU, sigmoid,
tanh).

35 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

Universal Approximation Theorem (Cybenko, 1989; Hornik et
al., 1989)

A layered neural network with a single hidden layer, a sufficient
number of neurons, and a non-linear activation function can
approximate any continuous function on a compact domain.

In practice, networks with more hidden layers often perform
better:

faster and easier convergence during training
more efficient representation of complex functions with fewer
parameters (deeper networks often require fewer neurons)
better generalization ability

36 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Multi-Layer Neural Network (Multi-Layer Perceptron,
MLP, 1980)

Hierarchical sequential architecture: neurons are arranged in
layers

Dense (fully connected) layers: every neuron in one layer is
connected to every neuron in the next layer

Special input layer:

corresponds to the inputs of the
neural network

Output layer:

the output (response) of the
network corresponds to the
activations of the output neurons

The remaining layers are hidden layers.
output layerinput_layer hidden layers

37 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Computing the Output of a Neural Network

Multi-Layer Perceptron (MLP)

How to implement the model?

A sequence (list) of layers L0, ..., Lmax

We already know how to implement a single layer

Computing the output (response) of a layered neural
network:

by performing a forward pass

we process one layer at a time, starting from the input layer
and going toward the output:

present the input to the current layer
compute the layer’s output
use this output as the input to the next layer

38 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Computing the Output of a Neural Network

Multi-Layer Perceptron (MLP)

Computing the output (response) of a layered neural
network: by performing a forward pass

Given an input vector ~x of length n, the model computes an
output vector ~y of length m

1 Output of the input layer neurons: yi = xi
2 Then we move from the first hidden layer toward the output

layer and compute (and store) the output yj of each neuron j
using the activations of neurons from the previous layer:
yj = f (ξj) = f (

∑
i wijyi + bi) (i indexes neurons in the layer

preceding neuron j)
3 The network output ~y = (y1, ..., ym) is the vector of outputs

from the output layer neurons

output layerinput_layer hidden layers
39 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Computing the Output of a Neural Network

Multi-Layer Perceptron (MLP)

How to implement the model?

A sequence (list) of layers L0, ..., Lmax

We already know how to implement a single layer

Computing the output (response) of a layered neural
network:

by performing a forward pass

we process one layer at a time, starting from the input layer
and going toward the output:

present the input to the current layer
compute the layer’s output
use this output as the input to the next layer

40 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Computing the Output of a Neural Network

Multi-Layer Perceptron (MLP)

Forward pass: matrix-based computation of network output

We again simplify and speed up the computation using matrix
operations and bias neurons

Bias neurons

For each hidden layer (similarly to
the input layer), we add a bias
neuron with constant output 1 to
represent the bias terms in the next
layer

41 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Computing the Output of a Neural Network

Matrix Representation of a Multi-Layer Neural Network

Matrix-based representation of an
MLP:

Let the network consist of layers L0

(input), ..., Lmax (output)

The weights of all neurons can be
represented by matrices
W1, ...,WLmax

WL is the weight matrix between
layers L− 1 and L, of size
(nL−1 + 1)× nL

(just as in the case of a single-layer
neural network)

W1 W3W2

L1 L3L2L0

42 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Computing the Output of a Neural Network

Computing the Output – Matrix Form I (Single Input)

1 Present input vector ~x
2 For layers L = L0, L1, ..., Lmax compute

the output vectors ~y0, ..., ~yLmax :

For L = L0 (input layer): ~y0 = ~x
For L = L1, ..., Lmax :

~zL = f (~ξL) = f (~yL−1WL)

~yL = (1 | ~zL)

where WL is the extended weight matrix
between layers L− 1 and L

3 The network output
~y = (y1, ..., ym) = ~yLmax is given by the
output layer activations

→ very efficient

W1 W3W2

L1 L3L2L0

yL0 yL1 yL2 yL3

43 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Multi-Layer Neural Network

Computing the Output of a Neural Network

Computing the Output – Matrix Form II (Batch of
Inputs)

1 Present a matrix of input vectors X
2 For layers L = L0, L1, ..., Lmax compute

the output matrices Y0, ...,YLmax :

For L = L0 (input layer): Y0 = X
For L = L1, ..., Lmax :

ZL = f (ξL) = f (YL−1WL)

YL = (1 |ZL)

where WL is the extended weight matrix
between layers L− 1 and L

3 The network output Y = YLmax is the
matrix of outputs from the output layer

→ even more efficient

W1 W3W2

L1 L3L2L0

yL0 yL1 yL2 yL3

44 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Training a Multi-Layer Neural Network

Neural network configuration:

The weight vector (and biases) of all neurons in the network,
denoted by ~w , represents all model parameters.

How do we train a multi-layer neural network?

We use a gradient-based method for the chosen loss function
E and the parameter vector ~w :

~w(t + 1) = ~w(t)− α∇E (~w)

Computing partial derivatives and updating weights is more
complex than in a single-layer network

The process is greatly simplified by the backpropagation
algorithm

45 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Backpropagation Algorithm

Backpropagation Algorithm

(Werbos, Rumelhart, 1974–1986)
We are given:

A training set T with N training samples (~xp, ~dp):
~xp = (xp1 , ..., x

p
n) — input pattern

~dp = (dp
1 , ..., d

p
m) — desired output

x10 = 1 x11 ... x1n d11 ... d1m

...
xN0 = 1 xN1 ... xNn dN1 ... dNm

A multi-layer neural network with a defined architecture, with
n + 1 input neurons and m output neurons.
The neurons must use continuous, differentiable activation
functions.

Goal:

Adjust the weights of all neurons in the network so that the
actual network output matches the desired output. 46 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Backpropagation Algorithm

Backpropagation Algorithm

Loss function:

Instead of SSE, we often use MSE (mean squared error), i.e.,
average over all patterns:

For one training example:

Ep(~w) =
1

2

m∑
j=1

(dpj − ypj)
2

For the whole training set:

E (~w) =
1

N

N∑
p=1

Ep =
1

2N

N∑
p=1

m∑
j=1

(dpj − ypj)
2

Other loss functions are also used (e.g., cross-entropy)

Goal of the backpropagation algorithm:

Minimize the loss function E on the given training set T
47 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Backpropagation Algorithm

Backpropagation Algorithm

Core principle: it is a standard gradient descent method

1 Randomly initialize the model parameters (weights and biases)
2 Repeat for training epochs:

Prepare a batch of input samples X and their corresponding
target outputs D
Compute the model’s actual outputs Y
Compute the model error (difference between Y and D)
Update parameters (weights and biases) to slightly reduce the
error (i.e., move in the opposite direction of the loss gradient):

wi (t + 1) = wi (t)− αt
∂Et

∂wi

Nice visualizations of loss surfaces:
jithinjk.github.io/blog/nn loss visualized.md.html
izmailovpavel.github.io/curves blogpost

48 / 72

https://jithinjk.github.io/blog/nn_loss_visualized.md.html
https://izmailovpavel.github.io/curves_blogpost/

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Backpropagation Algorithm

Backpropagation Algorithm

Basic principle of backpropagation:
1 Compute the actual network

output for the given batch of
training samples

by a single pass from the input to
the output layer (forward pass)

2 Compare the actual and desired
outputs

3 Update the weights and biases:

in the direction opposite to the
gradient of the loss
using a single pass from the
output to the input layer
(backward pass)

1. dopředný průchod

2. zpětný průchod

49 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Adaptation Rules

Backpropagation – Adaptation Rules

Loss function for a single training sample (~xt , ~dt) with network
output ~yt :

Et =
1

2

m∑
j=1

(dtj − ytj)
2

Partial derivative:
∂Et

∂wij
=
∂Et

∂ytj
·
∂ytj
∂ξtj
·
∂ξtj
∂wij

Weight update rule from neuron i to neuron j at time t:

wij(t + 1) = wij(t) + ∆wij(t)

Where ∆wij(t) is the weight increment that reduces Et :

∆wij(t) = −α ∂Et

∂wij
= −α · ∂Et

∂ytj
·
∂ytj
∂ξtj
·
∂ξtj
∂wij

α is the learning rate.
50 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Adaptation Rules

Backpropagation – Adaptation Rules

Key idea:

We do not compute the derivative ∂Et
∂wij

separately for each

weight (which would be extremely inefficient).

To compute ∂Et
∂wij

, specifically its component δj = ∂Et
∂ξtj

, we can

reuse error terms δk from neurons k in the next layer.

⇒ By a single backward pass (layer by layer), we compute the
error term δj for each neuron j .

Then we compute the weight gradient easily as:

∂Et

∂wij
= δtj ·

∂ξtj
∂wij

51 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Adaptation Rules

Backpropagation – Adaptation Rules

Define:

δtj =
∂Et

∂ytj
·
∂ytj
∂ξtj

=
∂Et

∂ξtj
(error term for neuron j)

⇒ this is the value we will backpropagate.
Then:

∆wij(t) = −α · ∂Et

∂ytj
·
∂ytj
∂ξtj
·
∂ξtj
∂wij

= −αδtj ·
∂ξtj
∂wij

= −αδtj · yti

where:
∂ξtj
∂wij

=
∂

∂wij

(∑
k

wkjytk

)
= yti

(where k indexes neurons in the preceeding layer to j)

52 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Adaptation Rules

Backpropagation – Adaptation Rules

I. For neurons j in the output layer:

Et =
1

2

m∑
j=1

(dtj − ytj)
2

δtj =
∂Et

∂ytj
·
∂ytj
∂ξtj

= −(dtj − ytj)f
′(ξtj)

For weights wij between the last hidden layer and output
layer:

∆wij(t) = −αδtj · yti = α(dtj − ytj)f
′(ξtj)yti

53 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Adaptation Rules

Backpropagation – Adaptation Rules

For neurons j in the last hidden layer:

Et =
1

2

m∑
k=1

(dtk − ytk)2 =
1

2

m∑
k=1

(dtk − f (ξtk))2

=
1

2

m∑
k=1

(dtk − f (
∑
j

wjkytj))2

(k indexes all output neurons, j indexes all neurons in the last
hidden layer)

∂Et

∂ytj
=

m∑
k=1

∂Et

∂ytk
· ∂ytk
∂ytj

=
m∑

k=1

∂Et

∂ytk
· ∂ytk
∂ξtk

· ∂ξtk
∂ytj

=
m∑

k=1

δtk · wjk
54 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Adaptation Rules

Backpropagation – Adaptation Rules

For neurons j in the last hidden layer:

∂Et

∂ytj
=

m∑
k=1

δtk · wjk

δtj =
∂Et

∂ytj
·
∂ytj
∂ξtj

=

(
m∑

k=1

δtk · wjk

)
f ′(ξtj)

For weights wij between the penultimate and last hidden
layer:

∆wij(t) = −αδtj · yti = −α

(
m∑

k=1

δtkwjk

)
f ′(ξtj)yti

55 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Adaptation Rules

Backpropagation – Adaptation Rules

For neurons j in any hidden layer:

∂Et

∂ytj
=

∑
k

∂Et

∂ytk
· ∂ytk
∂ytj

=
∑
k

∂Et

∂ytk
· ∂ytk
∂ξtk

· ∂ξtk
∂ytj

=
∑
k

δtk · wjk

(k indexes neurons in the layer following j)

δtj =
∂Et

∂ytj
·
∂ytj
∂ξtj

=

(∑
k

δtk · wjk

)
f ′(ξtj)

56 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Adaptation Rules

Backpropagation – Adaptation Rules

Summary:
wij(t + 1) = wij(t)− αδtjyti

where:

for output neuron j :

δtj = f ′(ξtj)(ytj − dtj)

for hidden neuron j :

δtj = f ′(ξtj)
∑
k

(δtkwjk)

57 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

Adaptation Rules

Reminder: Derivatives of Activation Functions

Sigmoid (logsig):

y = f (ξ) =
1

1 + e−λξ

f ′(ξ) = λy(1− y)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

Hyperbolic tangent (tanh):

y = f (ξ) =
1− e−2λξ

1 + e−2λξ

f ′(ξ) = λ2(1 + y)(1− y)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

58 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

The Backpropagation Algorithm

Backpropagation Algorithm (Iterative Variant)

1 Network initialization
Initialize all weights and biases with small random values.

2 Present a training sample in the form (~xt , ~dt)
3 Forward pass:

Process layer by layer from input to output.
For each neuron j , compute (and store) its output ytj using the
outputs of the previous layer (including bias neuron):

ytj = f (ξtj) = f

(∑
i

wijyti

)

where i indexes neurons in the preceding layer.
The forward computation is done efficiently using matrix
operations.

59 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

The Backpropagation Algorithm

Backpropagation Algorithm (Iterative Variant)

3 Forward pass (matrix version):
For layers L = L0, L1, ..., Lmax compute the output vectors
~yL0 , ..., ~yLmax

For L = L0 (input layer): ~yL0 = ~x

For L = L1, ..., Lmax :

~zL = f (~ξL) = f (~yL−1WL)

~yL = (1 | ~zL)

WL is the extended weight matrix
between layers L− 1 and L

W1 W3W2

L1 L3L2L0

yL0 yL1 yL2 yL3

The network output ~y = (y1, ..., ym) = ~yLmax is given by the
output layer activations.

60 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

The Backpropagation Algorithm

Backpropagation Algorithm (Batch Variant)

Forward pass for batch GD (matrix version):

1 Present input matrix X
2 For layers L = L0, ..., Lmax compute output matrices

Y0, ...,YLmax :

L = L0: Y0 = X
L = L1, ..., Lmax :

ZL = f (ξL) = f (YL−1WL)

YL = (1 |ZL)

3 Network output: Y = YLmax

61 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

The Backpropagation Algorithm

Backpropagation Algorithm (Iterative Variant)

4 Backward pass:
Go from the output layer toward the first hidden layer. For
each neuron j , compute and store its error term δtj and
update the incoming weights wij :

For output neurons:

δtj = f ′(ξtj)(ytj − dtj)

For hidden neurons:

δtj = f ′(ξtj)
∑
k

δtkwjk

(k indexes neurons in the next layer)
For every connection from neuron i to j (including bias):

wij(t + 1) = wij(t)− αδtjyti

62 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

The Backpropagation Algorithm

Backpropagation Algorithm (Matrix – Iterative Variant)

4 Backward pass (matrix version): For layers L = Lmax , ..., L1

compute error terms ~δL and update weight matrices WL:

For output layer:

~δLmax = f ′(~ξLmax) ◦ (~yt − ~dt)

For hidden layers:

~δL =
(
f ′(~ξL) ◦ ~δL+1

)
W T

L+1

Update weights:

WL(t + 1) = WL(t)− α~yT
L−1

~δL

63 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

The Backpropagation Algorithm

Backpropagation Algorithm (Batch Variant)

Backward pass for batch GD (matrix version):

For layers L = Lmax , ..., 1 compute error terms ∆L and update
weight matrices WL:

Output layer:

∆Lmax = f ′(ξLmax) ◦ (Y − D)

Hidden layers:

∆L = (f ′(ξL) ◦∆L+1)W T
L+1

Update weight matrix:

WL(t + 1) = WL(t)− αY T
L−1∆L

64 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

The Backpropagation Algorithm

Backpropagation Algorithm (Iterative Variant)

5 Stopping condition:
If the stopping condition is not met, return to step 2.

Maximum number of epochs
Time limit
Training error drops below threshold: E < Emin

Validation error stops decreasing (early stopping)
Weight updates become very small: |∆w | < ∆min

65 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

The Backpropagation Algorithm

Backpropagation – How to Present Training Samples

Presentation strategies:
1 Sample-wise per epoch (online GD): Each sample is

presented once per epoch, samples are shuffled every epoch.

Maximum number of epochs = how many times the full
dataset is presented.

2 Batch-wise per epoch (batch GD):
The entire training set is used at once to compute and apply a
single weight update.

3 Mini-batch training (stochastic GD, SGD):
Training set is randomly split into small batches that are
processed iteratively.

66 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Training a Multi-Layer Neural Network

The Backpropagation Algorithm

Backpropagation Algorithm

Discussion of Training Strategies

Online Gradient Descent (Online GD)
Fast learning, but relatively unstable — the algorithm reduces
the error for the current training sample, but the error may
increase for other samples.
More sensitive to outliers and to hyperparameter settings;
randomness can help escape local minima.

Batch Gradient Descent (Batch GD)
More stable and efficient for small datasets.
Computationally and memory intensive for large datasets.
More sensitive to noise in the data.

Mini-batch Stochastic Gradient Descent (Mini-batch
SGD)

Combines advantages of both previous methods.
Commonly used for large datasets and deep neural networks.

67 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Python Libraries for Multi-layer Neural Networks

Main Deep Learning Frameworks in Python

TensorFlow – Open-source library by Google.
Powerful framework for AI applications (mobile, server).
Supports both static and dynamic computation graphs.

PyTorch – Open-source library by Meta (Facebook).
Flexible and intuitive, ideal for research and academia.
Dynamic computation graphs, easy debugging.

Keras – High-level universal API.
Beginner-friendly and easy to understand.
Great for fast prototyping. Runs on top of TensorFlow, JAX, or
PyTorch.

PyTorch Lightning – High-level wrapper for PyTorch.
Reduces boilerplate code in training routines.
Supports multi-GPU training, scaling, and reproducibility.

JAX – Optimized for speed and experimental research.

Previously popular Theano – now deprecated.

68 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Python Libraries for Multi-layer Neural Networks

TensorFlow vs PyTorch – Comparison

TensorFlow – robust and production-ready, but more rigid:

Part of a broader ecosystem (TensorBoard, TF Lite, etc.).

Very efficient (C++/Python hybrid), supports distributed training,
native TPU support.

Optimized for deployment, mobile support (TF Lite), model
compilation.

Less developer-friendly: more code, harder to define custom models.

Difficult debugging of complex models (C++ backend).

PyTorch – newer, rapidly evolving, research-focused:

Pythonic, concise, and easier to use; gaining feature parity.

Slightly less performant (pure Python), but highly flexible.

Custom models and layers are very easy to implement and debug.

69 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Python Libraries for Multi-layer Neural Networks

Other Useful Libraries

Data manipulation and numerical computing:

Scikit-learn (sklearn) – classic ML algorithms; tools for data
processing and model evaluation.

NumPy – efficient numerical computing with arrays and
tensors.

Pandas – powerful data manipulation library for structured
data (categorical, missing values).

Visualization:

Matplotlib – general-purpose plotting (static, animated,
interactive).

Plotly – interactive visualizations.

Seaborn – statistical data visualization (correlations,
distributions, etc.).

TensorBoard – learning visualization, especially for
TensorFlow.

70 / 72

Neural Networks 1 - Single-layer and multilayer neural networks

Python Libraries for Multi-layer Neural Networks

Practical Examples

NN libraries.ipynb

Commented examples comparing major deep learning
frameworks (Keras, TensorFlow, PyTorch, Lightning) on a
simple binary classification task.

Demonstration of automatic symbolic tensor differentiation in
TensorFlow and PyTorch.

Frameworks and GPU support in practice.

NN libraries installation.ipynb

Brief installation guide for running the examples locally on
your own machine.

71 / 72

https://github.com/reitezuz/18NES1-2025-/blob/main/week5/NN_libraries.ipynb
https://github.com/reitezuz/18NES1-2025-/blob/main/week6/NN_libraties_installation.ipynb

Neural Networks 1 - Single-layer and multilayer neural networks

Python Libraries for Multi-layer Neural Networks

Interactive MLP Playground – Simple Visual Demos

https://playground.tensorflow.org/

We’ll explore it in more detail next time.

Five classification tasks (of increasing difficulty – spiral is the
hardest).

You can configure network architecture and training
parameters.

Includes excellent visualizations: loss over time, weight signs
and magnitudes, neuron behavior.

Great for experimenting: how many layers and neurons are
needed for which task?

Challenge: can you train a model that solves the spiral task?

72 / 72

https://playground.tensorflow.org/

	Review - Neurons with Continuous Activation Functions
	Single-Layer Neural Network
	Multidimensional Linear Regression
	Linear Classification (Pattern Recognition)

	Multi-Layer Neural Network
	Computing the Output of a Neural Network

	Training a Multi-Layer Neural Network
	Backpropagation Algorithm
	Adaptation Rules
	The Backpropagation Algorithm

	Python Libraries for Multi-layer Neural Networks

