Neural Networks 1 - Single-layer and multilayer neural networks
Review - Neurons with Continuous Activation Functions

Neural Networks 1 - Single-layer and multilayer
neural networks
18NES1 - Lecture 5, Summer semester 2024 /25

Zuzana Petfi¢kova

March 25, 2025

1/72

Neural Networks 1 - Single-layer and multilayer neural networks
Review - Neurons with Continuous Activation Functions

What We Covered Last Time

@ Most common continuous activation functions for
neurons

@ Sigmoid, hyperbolic

@ Linear (identity) function
tangent

Task: Linear regression) o
Task: Linear classification

y
3 a2
Y = Wi.X; + Wy
2 °T x
N x X X
8 2t X
1 Y K x
N
X x 8 1+ X
e , 8 X
-3 2)} 0 1 2 3 X L o I I I
X 3 2 29 U 1 2 30X
1 N
BRR
5 N WXL #W2x2 + W0 = 0
2 N
\\
3 N
3 N
N

2/72

Neural Networks 1 - Single-layer and multilayer neural networks

Review - Neurons with Continuous Activation Functions

What We Covered Last Time

@ Gradient-based learning for | neurons with continuous
and differentiable activation functions

o

(=)

Initialize weights with small random real values:
w(0) = (wo, wy, ..., wp) "
Initialize the learning rate: ag where 1 > ag > 0

Present the next training sample (X;, d;) and compute the
neuron’s potential and actual output:

§e = Xew

ye = f(&)

Update the weights (in the opposite direction of the error
gradient):

0E,
8w,-
(for the SSE loss function)

Optionally update the learning rate: oy — a1
If not finished, go back to step 2.

w(t+1) = w(t) —a = w(t) + e f'(&)(de — ye)XT

3/72

Neural Networks 1 - Single-layer and multilayer neural networks
Review - Neurons with Continuous Activation Functions

What We Covered Last Time

@ Gradient-based learning for general neurons with
continuous and differentiable activation functions

Sum of Squared Errors (SSE) loss function:

N 2N
E(w) = ;Z:l(dp v) = Z (d —f (Z WIXPI>> = Z; Ep(w)
p= p=

Partial derivative:
0E, OE, 8yp 0¢p

= —(dy—y,) - F1(E,) - X
8W, 8)/,; agp 8W,' (P YP) (gp) XP
Weight update rule (after presenting the p-th sample at time t):

wi(t 1) = wilt) — a5 = wi(t) + af (€)(dp — o)

1

In vector form:

w(t + 1) = w(t) — aVEN(W) = w(t) + a(dy — yp)f'(§p)X] 4/n

Neural Networks 1 - Single-layer and multilayer neural networks
Review - Neurons with Continuous Activation Functions

What We Covered Last Time

Cross-Entropy Loss Function
@ Particularly suitable for linear classification combined with
sigmoid or tanh activation.
@ Strongly penalizes low probabilities for the correct class.
@ For the sigmoid function, for example:

E=— Z(dp log yp + (1 — dp) log(1 — yp))

P
@ The gradient with respect to the output is:
OB _ _dp 4 (1 dp)
9yp Yp

° Substltutmg mto the weight update rule leads to beneficial
simplification:

0E, OE, Oy, 0& (]__.dp dp>
=y, 06, - 1—yp)Xpi = —dp)Xpi
Iw; ayP agp ow; L=Yo ¥ }/p(yP) p ()/p p) p

— More efficient learning and reduced risk of neuron saturation

5/72

Neural Networks 1 - Single-layer and multilayer neural networks
Review - Neurons with Continuous Activation Functions

What We Covered Last Time

© Preprocessing of Categorical Data

Ordinal (Label) Encoding
@ Used for ordered categories (e.g., low, medium, high) or for
binary categories (e.g., left, right), which are converted to
numbers and optionally normalized:
e Low =-1, Medium =0, High=1
o Left =-1, Right =1
One-Hot Encoding
@ Used for nominal (unordered) categories such as car color or
animal type. Converted to a binary representation (one feature
becomes as many columns as there are categories), and
optionally normalized:
o Red— [1,-1,-1], Blue— [-1,1,-1], Green— [-1,—1,1]
Embeddings
@ Used for capturing complex relationships between categorical
values, such as in word or sentence representations in natural

IQhO‘IIDO’ﬁ 6/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Today's Class

@ Neural network consisting of a single layer of neurons

@ Neural network with multiple layers of neurons — Introduction

7/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

© Neurons with a linear activation function
— Multivariate Linear Regression
e Linear neural network
@ Neurons with logistic or tanh activation function
— Multi-class Linear Classification (Pattern Recognition
Task)
e Single-layer perceptron

8/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

Motivating Example: Multi-class Classification and
Categorical Features

Size Fur Talks? | Class
Small Short No Cat
Large Long No Dog
Small None Yes Parrot
Medium Short No Cat

Size Fur Talks?

Cat Dog Parrot Carp

-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1

Example notebook: categorical_values.ipynb

9/72

https://github.com/reitezuz/18NES1-2025-/blob/main/week4/categorical_values.ipynb

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

Example: Multi-Class Classification with Categorical Features

Size Fur Speaks? | Cat Dog Parrot Carp
-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1
-1 -1 1 -1 -1 -1
0 0 -1 1 -1 -1

How do we train the model?

@ Train a separate neuron for each category (one at a time) and

merge the results...

Size Fur Speaks? | Cat
-1 0 -1 1
0 1 -1 -1
-1 -1 1 -1
0 0 -1 1

10/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

Example: Multi-Class Classification with Categorical Features
Size Fur Speaks? | Cat Dog Parrot Carp

-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1

How do we train the model?
@ Better approach: Construct a neural network with a single
layer of neurons and train it all at once.

11/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

@ The model is represented by the weight matrix:

Wo1 Wp2 ... Wom
W =

Wnp1 Wp2 ... Wpm

e Each neuron corresponds to one column of the matrix.
o The first row corresponds to biases (alternativelly, bias vector

can be represented separately).
12/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

Wor Wp2 Wom

Xl%’@‘“’

fw f : W=

Xn" =\ * Wnp1 Wp2 ... Wpm
@ If individual neurons have an activation function f : R — R,

we define: f(£) = (F(€1), ..., F(En))T
@ Model output:

—

7= (€)= FZW)

e Training set format: T = (X, D)
X10 = 1 X11 X1n d11 dlm

XNO — 1 XN1 ... XNn le d/\/m
Y = £(2) = f(XW)

13/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

© Neurons with a linear activation function
— Multidimensional Linear Regression
e Linear neural network
@ Neurons with logistic or tanh activation function
— Linear classification into multiple classes (pattern
recognition task)
e Single-layer perceptron

14 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Linear Neural Network

e Composed of a single layer of linear neurons (adding more

layers would provide no additional benefit - worth considering).

e Multidimensional linear regression.
o Model output:
Y = XW

Training using the Least Squares (LSQ) Method
W= (X"X)"1x"D

Training using Gradient Descent

15/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

Training Using Gradient Descent - Different Strategies:

@ In each step, update the weights of only one randomly chosen
neuron.

@ Simultaneously update the weight vectors of all neurons.

16 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

Training Using Gradient Descent ... e.g., SSE Loss Function

m m N
- 1
Esse(W) =) Esse(w) = 3 DD (do = i)’
j= j=1 p=1
1 m n 2 N
522 (i — f (Z WUXP'>> = ZEp(W)
j=1 p=1 p=1
Z — yp)* (error function for a single sample)

Partial Derlvatlves:
0E, OE, Oypj 0, /
B = —(dpj — Ypj f f i) Xpi
owjj ypj 0&p; Owj; (P PJ) (PJ) p

17/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

Training Using Gradient Descent
@ Update rule for a single weight:
wii(t +1) = w;i(t) + ae(dy — yy)f'(§g)x
@ Update rule for a single neuron with weight vector wj:
Wit +1) = W(t) + ae(dy — yy) ' (&)%

@ Update rule for a single layer of neurons with weight matrix
W:
W(t+1) = W(t) + X! [f'(&) o (de — 72)]

o Highly efficient computation.
e o ... Hadamard (element-wise) product of vectors.

18/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

Training Using Gradient Descent

@ Update rule for a single layer of neurons with weight matrix
Ww:
W(t+1) = W(t) + aex/ [f'(&) o (d; — 7:)]

e Highly efficient computation.
e o ... Hadamard (element-wise) product of vectors.

@ Update rule for the batch version:
Xiy = XW
Y: = f(Xiy)
W(t+1) = W(t)+ a:X][f'(Xi) o (D: — Y)]

e Even more efficient computation.

19/72

Neural Networks 1 - Single-layer and multilayer neural networks

Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

General Gradient Descent Algorithm (GD)

2]

©0

Initialize weights with small random real values W/(0) with
shape (n+1) xm

Initialize learning rate parameter ap.... 1 > a9 > 0

Present the next training sample (X;, c7t) and compute the
potential and actual model output:

g;:)_(‘tW

Ve = (&)
Update weights:
W(t+1) = W(t) + @&/ [(&) o (di — 72)]

Optionally update the learning rate: a; — aip41
If the stopping condition is not met, return to step 2. 20/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network

Single-Layer Neural Network with a Continuous
Activation Function

General Batch Gradient Descent Algorithm (Batch GD)
@ Initialize weights with small random real values W(0) with
shape (n+1) xm
Initialize learning rate parameter ag.... 1 > a9 > 0
@ Present the training set X and compute the potential and

actual model output:
Xip = XW

Yt - f(Xlt)
© Update weights:
W(t+1) = W(t) + X [f'(Xi) o (D: — Y3)]

Optionally update the learning rate: a; — aip41
If the stopping condition is not met, return to step 2.

©0

21/72

https://github.com/reitezuz/18NES1-2025-/blob/main/week4/perceptron_layer.ipynb

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network
Multidimensional Linear Regression

Multidimensional Linear Regression

Xl&’@_y;

@ Model: A neural network consisting of a single layer of linear
neurons (adding more layers would not provide any benefit -
worth considering).

@ Loss function for training using gradient descent: SSE (sum
squared error), SAE (sum absolute error, suitable for data
with outliers).

Atm.Pressure Wind Intensity ‘ Temperature Precipitation Risk
-1.3 -0.5 -0.2 0.9

22/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network
Linear Classification (Pattern Recognition)

Linear Classification into Multiple Classes (Pattern
Recognition)

@ Model: A single layer of neurons with the tanh activation
function or sigmoid (if using sigmoid, the target outputs must
be binary-coded).

@ Loss function for training using gradient descent: SSE,
cross-entropy (lower risk of neuron saturation).

@ Evaluation metrics: e.g., accuracy - percentage of correctly
classified samples.

Size Fur Speaks? ‘ Cat Dog Parrot Carp
-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1 23/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network
Linear Classification (Pattern Recognition)

Linear Classification into Multiple Classes (Pattern
Recognition)

@ The number of neurons in the network is chosen to be the
same as the number of classes.

@ Each neuron learns to recognize patterns from one specific
class.

How to determine the winning class?

@ by choosing the class with the highest output (argmax), or

@ by applying a softmax activation to convert the outputs into
class probabilities.

24/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network
Linear Classification (Pattern Recognition)

Linear Classification into Multiple Classes (Pattern
Recognition)

How to determine the winning class?
@ argmax:
Kmax = argmaxy yx
. returns index of the class with the highest output
@ Softmax - for continuous activation functions: computes

the probability distribution over classes:

e}/k

ij:1 e’

softmax(yx) =

o In libraries, softmax is often implemented as a special fully
connected output layer.

25/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network
Linear Classification (Pattern Recognition)

Cross-Entropy for Multiple Classes

Cross-Entropy Loss Function for Multi-Class Classification:
@ Used for classification into multiple classes in combination
with softmax output.

N m
E=- ZZ dpj log yp; (1)

p=1 j=1
@ d,; is the desired output (1 for the correct class, otherwise 0).
@ y,; is the probability of class j obtained from softmax.
Gradient of the loss function with respect to weights:
0E,
owjj

= ()’pj - dpj)Xpi (2)

— More efficient training, natural interpretation as the negative
log probability of the correct class.

26/72

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network
Linear Classification (Pattern Recognition)

Examples

perceptron_layer.ipynb

@ Example implementation of a single-layer neural network.

e Simple example: Gallbladder (Example 1) extended with
additional output variables.

o Observation: The gradient method handles the task, although
training takes longer and tuning the hyperparameters is more
challenging.

@ More complex example: Letter recognition.

o Observations: Here, the advantage of cross-entropy loss over
SSE becomes apparent.

o We can observe jumps in the loss function and neuron
saturation with SSE.

e Batch training is significantly more efficient than iterative
training.

27/ 72

https://github.com/reitezuz/18NES1-2025-/blob/main/week4/perceptron_layer.ipynb

Neural Networks 1 - Single-layer and multilayer neural networks
Single-Layer Neural Network
Linear Classification (Pattern Recognition)

Today's Class

@ Neural network consisting of a single layer of neurons

@ Neural network with multiple layers of neurons —
Introduction

28/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network

Multi-Layer Neural Network (Multi-Layer Perceptron,
MLP, 1980)

@ Hierarchical sequential architecture: neurons are arranged in
layers

e Dense (fully connected) layers: every neuron in one layer is
connected to every neuron in the next layer

Special input layer:
@ corresponds to the inputs of the
neural network
Output layer:

@ the output (response) of the
network corresponds to the
activations of the output neurons

input_layer hidden layers output layer

The remaining layers are hidden layers.

29/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

single-layer two-layer three-layer
neural network neural network neural network
linear areas convex areas general areas

input
layer

Multilayer neural network with non-linear (a.g., tanh) activations

Source: E. Volna: Neuronové sit& 1, Ostrava, 2008

30/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

Multilayer Perceptron
XOR wrapping general
one layer around areas areas
I D o W7
@
two layers

I

three layers

@
o

Source: E. Volna: Neuronové sit& 1, Ostrava, 2008

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

e |®
L] . ‘. .. ® x1 |/ -\}-7-_7 41_{_ / tg‘h
e ®f g .. * ~— 03—
o " . X I'/ 7-'\'7_ B —0’6’ N
° * 2\ /]

03+4,7x,-0,6x,=0
0,8-0,1x,+3,0x,=0

e @
o ® ® X / \ _0’1 _‘gh
. ° _ /’ N4
" ° : oo o / 7_/_,_,4\0_,8/ |
Pt e .. X, h 3,0 '
° N /

Source: K. Horaisova, Neural Networks 2, FNSPE CTU Dé&&in

32/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

Source: K. Horaisova, Neural Networks 2, FNSPE CTU Dé&¢&in

33/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

2 / o.'o.c —_— 'o.:o.n
input layer hidden layer hidden layer output layer

Source: K. Horaisova, Neural Networks 2, FNSPE CTU Dé&¢&in

34/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

— For general classification tasks, it is sufficient to use a neural
network with two hidden layers and one output layer.

o All layers with non-linear activations
What about multi-layer linear networks?

@ Stacking linear layers has no benefit — a composition of linear
transformations is equivalent to a single linear layer.

Can an MLP be used for regression tasks?
@ Yes — the output layer is typically linear in that case.

@ To capture non-linear dependencies, the hidden layers must
use non-linear activation functions (e.g., ReLU, sigmoid,
tanh).

35/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network

Motivation: Multi-Layer Perceptron

Universal Approximation Theorem (Cybenko, 1989; Hornik et
al., 1989)

@ A layered neural network with a single hidden layer, a sufficient
number of neurons, and a non-linear activation function can
approximate any continuous function on a compact domain.

@ In practice, networks with more hidden layers often perform
better:
o faster and easier convergence during training
e more efficient representation of complex functions with fewer
parameters (deeper networks often require fewer neurons)
o better generalization ability

36/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network

Multi-Layer Neural Network (Multi-Layer Perceptron,
MLP, 1980)

@ Hierarchical sequential architecture: neurons are arranged in
layers

e Dense (fully connected) layers: every neuron in one layer is
connected to every neuron in the next layer

Special input layer:
@ corresponds to the inputs of the
neural network
Output layer:

@ the output (response) of the
network corresponds to the
activations of the output neurons

input_layer hidden layers output layer

The remaining layers are hidden layers.

37/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network
Computing the Output of a Neural Network

Multi-Layer Perceptron (MLP)

How to implement the model?
@ A sequence (list) of layers Lo, ..., Lmax
@ We already know how to implement a single layer

Computing the output (response) of a layered neural
network:
@ by performing a forward pass

@ we process one layer at a time, starting from the input layer
and going toward the output:
e present the input to the current layer
e compute the layer's output
@ use this output as the input to the next layer

38/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network
Computing the Output of a Neural Network

Multi-Layer Perceptron (MLP)

Computing the output (response) of a layered neural
network: by performing a forward pass
@ Given an input vector X of length n, the model computes an
output vector y of length m
© Output of the input layer neurons: y; = x;
@ Then we move from the first hidden layer toward the output
layer and compute (and store) the output y; of each neuron j
using the activations of neurons from the previous layer:
yj = f(&§) = f (3, wjyi + bi) (i indexes neurons in the layer
preceding neuron)
© The network output ¥ = ()1, ..., ¥m) is the vector of outputs
from the output layer neurons

39/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network
Computing the Output of a Neural Network

Multi-Layer Perceptron (MLP)

How to implement the model?
@ A sequence (list) of layers Lo, ..., Lmax
@ We already know how to implement a single layer

Computing the output (response) of a layered neural
network:
@ by performing a forward pass

@ we process one layer at a time, starting from the input layer
and going toward the output:
e present the input to the current layer
e compute the layer's output
@ use this output as the input to the next layer

40/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network
Computing the Output of a Neural Network

Multi-Layer Perceptron (MLP)

Forward pass: matrix-based computation of network output

@ We again simplify and speed up the computation using matrix
operations and bias neurons

Bias neurons

@ For each hidden layer (similarly to
the input layer), we add a bias
neuron with constant output 1 to
represent the bias terms in the next
layer

41/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network
Computing the Output of a Neural Network

Matrix Representation of a Multi-Layer Neural Network

Matrix-based representation of an
MLP:

@ Let the network consist of layers Ly
(input), ..., Lmax (output)
@ The weights of all neurons can be
represented by matrices
Wi, ... W,
o W, is the weight matrix between
layers L — 1 and L, of size
(nL,1 + 1) X ng
(just as in the case of a single-layer Lo L, 5 L,
neural network)

42/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network
Computing the Output of a Neural Network

Computing the Output — Matrix Form | (Single Input)

@ Present input vector X

@ For layers L = Ly, Ly, ..., Lmax compute
the output vectors yp, ..., Vi,...:

o For L= Lo (input laye): 5 = ¥
o For L = Ll’ ceny Lmax:

Z = f(&) = F(Fi1W))

yo=(112)
where W, is the extended weight matrix
between layers L — 1 and L
© The network output

V= (Y1, Ym) = Y1, is given by the
output layer activations

Yo —> Yu —> Y2 —> Vi3

— very efficient
43/72

Neural Networks 1 - Single-layer and multilayer neural networks
Multi-Layer Neural Network
Computing the Output of a Neural Network

Computing the Output — Matrix Form Il (Batch of
Inputs)

© Present a matrix of input vectors X

© For layers L = Lo, Ly, ..., Lmax compute
the output matrices Yo, ..., Y1,

o For L =Ly (input layer): Yo = X
o For L= 1Ly, ..., Lyax:

Zp = f(&) = f(Yi-1 W)

Yi=(Q112)
where W is the extended weight matrix
between layers L — 1 and L

© The network output Y =Y}, _ is the Yio —3 Vi —> Yz —>Vis
matrix of outputs from the output layer

— even more efficient
44/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network

Training a Multi-Layer Neural Network

Neural network configuration:

@ The weight vector (and biases) of all neurons in the network,
denoted by w, represents all model parameters.

How do we train a multi-layer neural network?

@ We use a gradient-based method for the chosen loss function
E and the parameter vector w:

W(t+1) = w(t) — aVE(W)

o Computing partial derivatives and updating weights is more
complex than in a single-layer network

@ The process is greatly simplified by the backpropagation
algorithm

45 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Backpropagation Algorithm

Backpropagation Algorithm

(Werbos, Rumelhart, 1974-1986)

We are given:
o A training set T with N training samples (X, dp):

o xP = (x{,...,xP) — input pattern
o dP = (d?,...,dP) — desired output
xo=1 x11 .. Xxin| di1 .. dim
xvo=1 Xxn1 ... Xnn | dni dm

@ A multi-layer neural network with a defined architecture, with
n+ 1 input neurons and m output neurons.

@ The neurons must use continuous, differentiable activation
functions.

Goal:
@ Adjust the weights of all neurons in the network so that_the

actual network output matches the desired output. 46 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Backpropagation Algorithm

Backpropagation Algorithm

Loss function:

o Instead of SSE, we often use MSE (mean squared error), i.e

average over all patterns:

@ For one training example:
- 1
Ep(W) = > Z(dpj ~ ¥pi)?

e For the whole training set:

E(w) = NZ p = 2NZZ(dPJ yPJ

p=1 j=1
@ Other loss functions are also used (e.g., cross-entropy)

Goal of the backpropagation algorithm:
@ Minimize the loss function E on the given training set T

47/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Backpropagation Algorithm

Backpropagation Algorithm

Core principle: it is a standard gradient descent method

@ Randomly initialize the model parameters (weights and biases)
@ Repeat for training epochs:

e Prepare a batch of input samples X and their corresponding
target outputs D
e Compute the model’s actual outputs Y
o Compute the model error (difference between Y and D)
o Update parameters (weights and biases) to slightly reduce the
error (i.e., move in the opposite direction of the loss gradient):
OE;

Nice visualizations of loss surfaces:

jithinjk.github.io/blog/nn_loss_visualized.md.html
izmailovpavel.github.io/curves_blogpost

48 /72

https://jithinjk.github.io/blog/nn_loss_visualized.md.html
https://izmailovpavel.github.io/curves_blogpost/

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Backpropagation Algorithm

Backpropagation Algorithm

Basic principle of backpropagation:
@ Compute the actual network
output for the given batch of
training samples
e by a single pass from the input to
the output layer (forward pass)

@ Compare the actual and desired
outputs
© Update the weights and biases:

e in the direction opposite to the
gradient of the loss

e using a single pass from the
output to the input layer
(backward pass)

1. dopfedny prichod)

2. zpétny priichod

49/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Adaptation Rules

Backpropagation — Adaptation Rules

@ Loss function for a single training sample (X;, Jt) with network
output yi:
E: = 1i(dt‘ -y ‘)2
2 £] tj
j=1

o Partial derivative:

aEt i 8Et) 6ytj . 6&]

owjj N Oyyj 0&; Ow;j
@ Weight update rule from neuron i to neuron j at time t:

W,'j(t + 1) = W,'j(t) + AW,'j(t)

@ Where Aw;j(t) is the weight increment that reduces E;:
OE; OE; 8)’tj 8§tj

Awilt) = —ag = T G Bgy dwg

@ « is the learning rate.
50 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Adaptation Rules

Backpropagation — Adaptation Rules

Key idea:
@ We do not compute the derivative gvb;; separately for each
weight (which would be extremely inefficient).
@ To compute ngv; specifically its component §; = gTE;' we can
reuse error terms &, from neurons k in the next layer.
e = By a single backward pass (layer by layer), we compute the
error term §; for each neuron j.

@ Then we compute the weight gradient easily as:

—— = O¢
aW,‘j J 8W;j

51/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Adaptation Rules

Backpropagation — Adaptation Rules

Define:
8ytj a&j 8ftj

= this is the value we will backpropagate.
Then:

(error term for neuron)

5y =

OE; 8)/tj (%tj
Aw(t) = —a- —L . 228 = —ady

where:

8Wij_3Wij ;ij}/tk = Yii

(where k indexes neurons in the preceeding layer to j)

52/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Adaptation Rules

Backpropagation — Adaptation Rules

l. For neurons j in the output layer:

m

1
Et = 5 Z(dtf — ytj)2
j=1
OF: Oyy

L YEt — (dsi — Vi) F(Es:
Otj vy OEy (dyj — y)f'(&y)

For weights w;; between the last hidden layer and output
layer:
AWij(t) = _045tj Vi = a(dtj - Ytj)f/(ftj))/ti

53/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Adaptation Rules

Backpropagation — Adaptation Rules

For neurons j in the last hidden layer:

E: = Zdtk_}/tk = Zdtk_fgtk
k:

(de — FO winyy))
1 J

N+~

I
MHS i

2

x
Il

(k indexes all output neurons, j indexes all neurons in the last
hidden layer)

% _ Zm: OE; aytk Z O, 8)/tk 8§tk
Oyij — Oy Dy 8Ytk O Dyyj
= Z Otk - Wik
k=1 54 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Adaptation Rules

Backpropagation — Adaptation Rules

For neurons j in the last hidden layer:

OE; =
=t Ser - Wi
ayg E tk * Wik

_ OE Oyy _
o9 = Oyyj 0&; Zétk wik | F(4)

For weights w;; between the penultimate and last hidden
layer:

Awji(t) = —ady - y1i = —« (Z 5tkWJk> (§4j)yri

55/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Adaptation Rules

Backpropagation — Adaptation Rules

For neurons j in any hidden layer:

OE, OE,
dyy Z

Otk
Oytk Oyyj

8)/tk'aftk
Oywe Otk 8ytj

o« OE
-

= Zétk‘ij
K

(k indexes neurons in the layer following j)

8Et) 8}’0

i - .Y
Y 8yg afg

= (Z Otk - ij> ftj)

56 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Adaptation Rules

Backpropagation — Adaptation Rules

Summary:
wii(t + 1) = w;i(t) — adyysi

where:

e for output neuron j:

ot = (&) (v — dyy)

o for hidden neuron j:

S = F(&5) D> (Berwin)

k

57 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
Adaptation Rules

Reminder: Derivatives of Activation Functions

Sigmoid (logsig): Hyperbolic tangent (tanh):
1 1—e 22X
Y—f(f)—m y:f(f):m
f'(€) = Ay(1—y) F&) = N(1+y)(1—y)
| VAR
- - 1 N\

58 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
The Backpropagation Algorithm

Backpropagation Algorithm (Iterative Variant)

@ Network initialization

Initialize all weights and biases with small random values.
@ Present a training sample in the form (X, d;)
© Forward pass:

o Process layer by layer from input to output.
o For each neuron j, compute (and store) its output y;; using the
outputs of the previous layer (including bias neuron):

Yy = f(ftj) =f (Z Winti)

where / indexes neurons in the preceding layer.
e The forward computation is done efficiently using matrix
operations.

59 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
The Backpropagation Algorithm

Backpropagation Algorithm (Iterative Variant)

© Forward pass (matrix version):
For layers L = Lo, Ly, ..., Lmax compute the output vectors

Yoy s Yimax

e For L =Ly (input layer): y;, = X

o For L= L4, ..., Lmax:
7, = (&) = F(FLa W)

yi=(1]2)

W, is the extended weight matrix
between layers L — 1 and L

Yio —> Yu —> Y2 —> Vi3
@ The network output ¥ = (y1, ..., ¥m) = Y. IS given by the
output layer activations.

60 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
The Backpropagation Algorithm

Backpropagation Algorithm (Batch Variant)

Forward pass for batch GD (matrix version):
@ Present input matrix X

@ For layers L = Ly, ..., Lmax compute output matrices
Yo,..., YLmax:
o L= Lo: Yo =X
o L=1Ly, ... Lpm:

Zy = (&) = F(YiaWL)
Y= (1]2.)
© Network output: Y =Y,

61/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
The Backpropagation Algorithm

Backpropagation Algorithm (Iterative Variant)

© Backward pass:
Go from the output layer toward the first hidden layer. For

each neuron j, compute and store its error term 4, and
update the incoming weights wj;:
e For output neurons:

05 = (&) (vy — dy)
e For hidden neurons:
8y = (&) Y Suwik
K
(k indexes neurons in the next layer)
o For every connection from neuron i to j (including bias):

wii(t 4+ 1) = w;i(t) — adyyei

62/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
The Backpropagation Algorithm

Backpropagation Algorithm (Matrix — lterative Variant)

© Backward pass (matrix version): For layers L = Ly, ..., L1
compute error terms d; and update weight matrices W, :
e For output layer:

ngax = f/(max) (yt)

e For hidden layers:
5L = (f’(ﬁ) © 5L+1) WL74_»1
e Update weights:

Wi (t+1) = Wi(t) — ay] 10,

63/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
The Backpropagation Algorithm

Backpropagation Algorithm (Batch Variant)

Backward pass for batch GD (matrix version):

o For layers L = L., ..., 1 compute error terms A; and update
weight matrices W;:

o Output layer:

Ay, = f'(E,) o (Y = D)
e Hidden layers:

Ap = (f'(&) 0 Arra) Wiy
e Update weight matrix:

Wi(t+1) = Wi(t) —aY, ;AL

64/72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
The Backpropagation Algorithm

Backpropagation Algorithm (Iterative Variant)

© Stopping condition:

If the stopping condition is not met, return to step 2.
Maximum number of epochs
Time limit
Training error drops below threshold: E < Epi,
Validation error stops decreasing (early stopping)
Weight updates become very small: [Aw| < A

6572

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
The Backpropagation Algorithm

Backpropagation — How to Present Training Samples

Presentation strategies:
@ Sample-wise per epoch (online GD): Each sample is
presented once per epoch, samples are shuffled every epoch.

e Maximum number of epochs = how many times the full
dataset is presented.

@ Batch-wise per epoch (batch GD):

e The entire training set is used at once to compute and apply a
single weight update.

© Mini-batch training (stochastic GD, SGD):

e Training set is randomly split into small batches that are
processed iteratively.

66 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Training a Multi-Layer Neural Network
The Backpropagation Algorithm

Backpropagation Algorithm

Discussion of Training Strategies

@ Online Gradient Descent (Online GD)

e Fast learning, but relatively unstable — the algorithm reduces

the error for the current training sample, but the error may
increase for other samples.

o More sensitive to outliers and to hyperparameter settings;
randomness can help escape local minima.
e Batch Gradient Descent (Batch GD)
o More stable and efficient for small datasets.
o Computationally and memory intensive for large datasets.
e More sensitive to noise in the data.

e Mini-batch Stochastic Gradient Descent (Mini-batch
SGD)

e Combines advantages of both previous methods.
e Commonly used for large datasets and deep neural networks.

67/72

Neural Networks 1 - Single-layer and multilayer neural networks
Python Libraries for Multi-layer Neural Networks

Main Deep Learning Frameworks in Python

@ TensorFlow — Open-source library by Google.
o Powerful framework for Al applications (mobile, server).
e Supports both static and dynamic computation graphs.
PyTorch — Open-source library by Meta (Facebook).
e Flexible and intuitive, ideal for research and academia.
e Dynamic computation graphs, easy debugging.
o Keras — High-level universal API.
o Beginner-friendly and easy to understand.
o Great for fast prototyping. Runs on top of TensorFlow, JAX, or
PyTorch.
PyTorch Lightning — High-level wrapper for PyTorch.

o Reduces boilerplate code in training routines.
e Supports multi-GPU training, scaling, and reproducibility.

JAX — Optimized for speed and experimental research.

Previously popular Theano — now deprecated.

68 /72

Neural Networks 1 - Single-layer and multilayer neural networks

Python Libraries for Multi-layer Neural Networks

TensorFlow vs PyTorch — Comparison

TensorFlow — robust and production-ready, but more rigid:

Part of a broader ecosystem (TensorBoard, TF Lite, etc.).

Very efficient (C4++/Python hybrid), supports distributed training,
native TPU support.

Optimized for deployment, mobile support (TF Lite), model
compilation.

Less developer-friendly: more code, harder to define custom models.

Difficult debugging of complex models (C++ backend).

PyTorch — newer, rapidly evolving, research-focused:

Pythonic, concise, and easier to use; gaining feature parity.
Slightly less performant (pure Python), but highly flexible.
Custom models and layers are very easy to implement and debug.

69 /72

Neural Networks 1 - Single-layer and multilayer neural networks
Python Libraries for Multi-layer Neural Networks

Other Useful Libraries

Data manipulation and numerical computing:
e Scikit-learn (sklearn) — classic ML algorithms; tools for data
processing and model evaluation.
@ NumPy — efficient numerical computing with arrays and
tensors.
e Pandas — powerful data manipulation library for structured
data (categorical, missing values).
Visualization:
e Matplotlib — general-purpose plotting (static, animated,
interactive).
@ Plotly — interactive visualizations.
e Seaborn — statistical data visualization (correlations,
distributions, etc.).
@ TensorBoard — learning visualization, especially for

TensorFlow.
70/72

Neural Networks 1 - Single-layer and multilayer neural networks
Python Libraries for Multi-layer Neural Networks

Practical Examples

NN _libraries.ipynb

@ Commented examples comparing major deep learning
frameworks (Keras, TensorFlow, PyTorch, Lightning) on a
simple binary classification task.

@ Demonstration of automatic symbolic tensor differentiation in
TensorFlow and PyTorch.

@ Frameworks and GPU support in practice.
NN _libraries_installation.ipynb

@ Brief installation guide for running the examples locally on
your own machine.

71/72

https://github.com/reitezuz/18NES1-2025-/blob/main/week5/NN_libraries.ipynb
https://github.com/reitezuz/18NES1-2025-/blob/main/week6/NN_libraties_installation.ipynb

Neural Networks 1 - Single-layer and multilayer neural networks
Python Libraries for Multi-layer Neural Networks

Interactive MLP Playground — Simple Visual Demos

https://playground.tensorflow.org/

@ We'll explore it in more detail next time.

e Five classification tasks (of increasing difficulty — spiral is the
hardest).

@ You can configure network architecture and training
parameters.

@ Includes excellent visualizations: loss over time, weight signs
and magnitudes, neuron behavior.

@ Great for experimenting: how many layers and neurons are
needed for which task?

@ Challenge: can you train a model that solves the spiral task?

72/72

https://playground.tensorflow.org/

	Review - Neurons with Continuous Activation Functions
	Single-Layer Neural Network
	Multidimensional Linear Regression
	Linear Classification (Pattern Recognition)

	Multi-Layer Neural Network
	Computing the Output of a Neural Network

	Training a Multi-Layer Neural Network
	Backpropagation Algorithm
	Adaptation Rules
	The Backpropagation Algorithm

	Python Libraries for Multi-layer Neural Networks

