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Review of the Previous Lecture

Linear Neuron and the Linear Regression Task
e Internal potential: £ =Y 7 ; wix; + wo
@ Output: y =¢

37 o We fit the points in the

Yy = WXy + Wo

input space with a
hyperplane (a line, a plane,
etc.).

@ We assume a linear
relationship between the

21 input variables xi, ..., X,

) and the output y.
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Review of the Previous Lecture

Linear Neuron and the Linear Regression Task

@ During training, we minimize the difference between the
actual and desired output for each training sample.

o Instead of SAE (sum of absolute errors), we minimize the
quadratic error function (sum of squared errors, SSE):

E:%ZEgZ%Z(dp_YP)z
P

P
— Least Squares Methods (LSQ)

@ Learning algorithms for a linear
neuron (linear regression):
e LSQ Method - based on
explicit computation.
e Gradient Descent Method - a
local optimization method (with
broader applicability). 3/46
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Training a Linear Neuron Using Gradient Descent

General Algorithm Scheme (Gradient Descent)

o Problem Definition:

o We have a function f(X) : R" = R /
o We seek X such that f(X) is ; /

minimized e /
o Solution (gradient descent 1N

method): ——
@ Start at an (random) initial point x(0)
@ Compute the gradient: Vf(x) = <<9f of _"%n) The

Ox17 Oxp "
gradient represents the direction and magnitude of the
greatest increase in f(x)
© lteratively move in small steps opposite to the gradient
direction: X(t + 1) = x(t) — aVf(X) « is a small positive
number (step size, learning rate)

© For a single input feature: x;(t + 1) = x;(t) — ag)'; 446
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Training a Linear Neuron Using Gradient Descent

@ We minimize the SSE loss function in weight space:

1 N 1 N n 2 N
E(V_‘}) = §Z(dp_)’p)2 = 52 (dp_ZWiXpi> :ZEP(VV)
p=1 p=1 i=0 p=1

e E,(w) is the error function for a single sample

@ The loss function is quadratic,
convex, meaning gradient descent
should reliably find its global
minimum with appropriate
parameter tuning.
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Training a Linear Neuron Using Gradient Descent

General Algorithm Scheme (Gradient Descent)
Q Initialize weights with small random values:
w(0) = (wo, wi, ..., w,) "
Initialize learning rate: ap, where 1 > ag > 0.

@ Present the next training sample (X, d¢) and compute the
neuron output:

Yt = XtWw

@ Update weights (move in the direction opposite to the
gradient of the loss function):

w(t+ 1) = w(t) — aVE(W) = w(t) + ae(ds — y:)X

@ Optionally update the learning rate: a; — aipy1.
© |If stopping criteria are not met, return to step 2.
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Gradient Descent

@ Previously, we explored different variants of gradient descent,
its hyperparameters, and demonstrated the importance of
proper hyperparameter tuning through examples.

Conclusion

o Gradient descent can solve linear regression as effectively as
the classical LSQ method, BUT it is more challenging to
apply:

e It is a local optimization method: results may vary across runs.
e It is highly sensitive to hyperparameter tuning, weight
initialization, and data preprocessing.

@ Compared to LSQ), gradient descent is:

e More robust to numerical errors.
o Applicable to a broader range of problems where LSQ
struggles:
o Large datasets (many features or samples).
o Data with outliers or with significant noise.
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Today's Lecture

© Perceptron with a Continuous Activation Function

e The most common activation functions for a perceptron
e Training a general perceptron using the gradient descent
method

@ Neural network with a single layer of neurons
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From Linear Regression to a More General Perceptron

Model

e Using gradient descent, we can train a linear neuron and solve

the linear regression problem.

Question: Could the gradient descent method be used for

other activation functions?

@ If so, we could solve nonlinear regression or classification tasks:

X2

S WX WX -h = 0
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From Linear Regression to a More General Perceptron
Model

Question: Could the gradient descent method be used for
other activation functions?

@ Yes, but only for certain types: the activation function must
be continuous and differentiable.

— It cannot be applied to a step function: (Question: What is its
derivative?)

— Could we replace the step function with another activation
function that is continuous and differentiable?
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Searching for Continuous Functions that Resemble the
Step Activation Function

For the bipolar neuron model

1 for £ >0 ... active
f(&) =sign(§) =< 0 for £ =0 ... silent
-1 for£ <0 .. passive

™

For the binary neuron model y
1 for £ >0 ... neuron is active :
(&) = signum(§) = ¢ 0.5 for £ =0 ... neuron is silent
0 for £ <0 ... neuron is passive
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Searching for Continuous Functions that Resemble the
Step Activation Function

Requirements:
e f(y) is defined and continuous on (—o0, o0)
o limy_s_oof(y) =m< M= limy,_,of(y)
e f(y)~ m ... neuron is passive
e f(y)~ M ... neuron is active
Typical examples:
e (m, M) = (—o0,00) ... linear function
e (m, M) =(0,1) - binary model ... sigmoid function
e (m, M) =(—1,1) - bipolar model ... hyperbolic tangent (tanh)
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Continuous Activation Functions

Linear (ldentity)

o f(§)=¢
Usage

@ Not suitable for classification tasks

@ Highly suitable for regression tasks

Where it is used:

@ Single-layer linear neural networks

@ Output layer of multilayer/deep networks for regression tasks
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Continuous Activation Functions

Sigmoidal

e f(&) = 1‘5"6’%)‘5 ... logistic
sigmoid (logsig)

Hyperbolic Tangent
PELIY:
[+ f(f) = 14:7_2& ... tanh

o binary model @ bipolar model

100{ — a1

075 { — a=s

20 -15 -10 -05 0o 05 1o 1s 20

20 -15 -l0 -05 00 05 10 15 20

— " Smoothed" versions of the step activation function
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Continuous Activation Functions

Sigmoid and Hyperbolic Tangent - Geometric Interpretation:

X2
3T x
S X »
~ X Py
~ X
~ "
~
~
~ 1
N, 1 X
N
~
— I e L I I I
-3 2 1. O 1 2 30X
N
1+ N
\\w1<>(1 +w2x2 + wp =0
~
24 S
N
~
N
-3+ S
N

... Linear classification task

@ With a sigmoidal activation function, the neuron's output can
be directly interpreted as the probability that the input
belongs to a given class.
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Continuous Activation Functions
Sigmoidal Hyperbolic Tangent

o (&)= ﬁ ... logistic ; 1 e-2ré
= =%+ ... tanh
sigmoid (Ice)gsig) o £(¢&) 1re 2% an

=3 — s // —

. j - Y

Parameter \ - Slope
@ Determines classification uncertainty near decision boundaries

@ A — oo ... step activation function

e Smaller X ... wider boundary between classes

e A — 0 ... neuron does not distinguish between the classes
(output is always 0.5 or 0)

Typical choices: A =1 or A = 2 for logsig, A = 1 for tanh
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Continuous Activation Functions

Sigmoidal Hyperbolic Tangent

o (&)= H%Ag ... logistic . 1 e-2ré
= =%+ ... tanh
sigmoid (Ice>gsig) o £(¢) 1re—2NE an

B = S a
) j g 2
Usage

@ Suitable for classification tasks (smoothed threshold function)

@ Used in hidden layers of feedforward and deep neural
networks, as well as in recurrent networks
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Continuous Activation Functions

Rectified Linear Unit (RelLU) v

fi 0
o £(€) = max(0,6) = {f) e

@ Not differentiable everywhere, but computationally efficient
@ Widely used in hidden layers of deep neural networks
Softplus (Smooth Alternative to ReLU)
o f(£) =In(1+ &)
@ Behaves like ReLU for large ¢

@ Behaves like a sigmoid function for small &

@ Less commonly used than RelLU
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Continuous Activation Functions

Local Activation Functions

Triangular Function

Radial .Ba5|s Function 1-[¢| for|¢] <1
(Gaussian) o f(§) = .
@ 0 otherwise
e f(§) =e a ... radbas ... tribas
° (= |X;W| ° (= %

20 -15 -lo -05 00 05 10 15 20

— Networks with local units, Radial Basis Function (RBF)

networks
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Other Activation Functions

Stochastic Neuron Model: Stochastic Activation Function
e (&) =1 with probability P(&)
e (&) = 0 with probability 1 — P(&)

The probability function P(&) is most commonly a sigmoid
function:

° P(§) = —=

1+e T
e T ... pseudo-temperature

— Boltzmann Machines, Deep Belief Networks (DBN)

@ Simplified explanation: Compute the sigmoid function value,
interpret it as a probability, and use it to randomly determine
the neuron’s output (by tossing a coin)
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Other Activation Functions

Softmax
@ A specialized activation function for multi-class classification
@ A generalization of the argmax function, converting numerical
values into probabilities
e f:R"—> R",
eXi
f(X,') = =N »
> j1 €9

0010

0.008

0.006

0.004

0.002

/

T30 15 10 65 00 o5 1o 15 20

— Suitable only for the output layer in classification tasks
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Gradient Descent for Training Neurons with a
Continuous Activation Function

The gradient descent method can be used to train neurons with
any continuous and differentiable activation function f (e.g.,
sigmoid function, hyperbolic tangent):

e Neuron output (for a single sample):

=f(&) = f (oo wixi) = f(xw)
° Matrlx form (for the entire training set): y = f(Xw) (W is a
column vector)

@ We aim to minimize the sum of squared errors (SSE) in
weight space:

N 2
E(w) = %Z(dp _YP) ;Z (d —f (Z W,Xp,>>

p=1 p=1

Il
M=
0
E/l
0

3!

) is the error function for a single sapple
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Gradient Descent for Training Neurons with a
Continuous Activation Function

@ We minimize the sum of squared errors (SSE) in weight space:
N N

EG) = 3> (-3l =5

p=1 p=1

ok N ow s

@ Since the error function may no longer be quadratic, gradient
descent may fail to find the global minimum, even with

optimal hyperparameter settings. 25/26
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Gradient Descent for Neurons with a Continuous

Activation Function
1. First, compute the error function

Ex(7) = 3(dp — o) = 5(ds — F(&))

o)

Compute its partial derivatives:

O, _ 0Ep Oyp 0%p _
ow; Oyp 0&p Ow; N

—(dp — yp)f/(fp)xpi
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Gradient Descent for Neurons with a Continuous
Activation Function

1. Compute the partial derivatives of the error function:

OE,
ow;

*(dp - YP)f/(ép)Xpi

2. Formulate the weight update rule:

E
wi(t41) = wilt) — a0 = wi(t) + o (€)(d — o)y

For the weight vector:

w(t+1) = w(t) — aVE,(w) = w(t) + aldp — yp)f'(§p)X]
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Gradient Descent for Neurons with a Continuous
Activation Function

Computing the Derivative of the Activation Function

Sigmoidal Function ... logsig Hyperbolic Tangent ... tanh
1 1—e 22X
F1(&p) = Avp(1 ) F(€p) = N(1+ yp)(1 — yp)
/ \\ ”: // \\
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Gradient Descent for Neurons with a Continuous
Activation Function

General Algorithm Schema (GD, Gradient Descent)

o

Initialize weights with small random real values:
VV(O) = (Wo, Wi, ..., Wn)T
Initialize the learning rate: ag such that 1 > ag > 0.
Present the next training sample (X, d;) and compute the
potential and actual neuron output:
§e = Xew
ye = f(&)
Update the weights:

w(t + 1) = w(t) + aef’ (&) (de — ye )X
Optionally update the learning rate: a; — aie41.
If stopping criteria are not met, return to step 2.
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Discussion on the Gradient Descent Method

Different Learning Strategies

o Pattern Presentation Strategies:
@ lterative sample presentation (Online GD)

o Fast learning (in terms of the number of epochs) but relatively
unstable (the algorithm reduces error for the current sample
— error may increase for other samples)

@ Batch sample presentation (Batch GD)

@ More stable learning but often leads to " worse" solutions
o Efficient for small datasets, but requires more memory for
large datasets

© Mini-batch sample presentation (SGD, Stochastic GD)
@ A compromise solution, widely used in deep networks
e Learning Rate Strategies:

o Constant learning rate - must be set appropriately
e Adaptive learning rate - e.g., decreasing over time; the decay
rate must be properly tuned
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Discussion on the Gradient Descent Method

Different Learning Strategies
@ Weight Initialization:
o Weights are initialized with small random values (ideally
centered around 0)
e Too large or biased weights make perceptron training difficult
@ Stopping Criteria:
@ A predefined maximum number of epochs
@ When the average error is sufficiently small ... E < Enip
© When the validation set error stops decreasing ... early
stopping
@ When the weight update Aw is too small ... |[Aw| < dmin
e It is also possible to use alternative loss functions (e.g.,
cross-entropy for classification) or regularization terms
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Discussion on the Gradient Descent Method

Importance of Preprocessing Training Data:

e For efficient and fast learning using gradient descent, both
initial weights and input samples should have values in a small
range, e.g., within [—1, 1] or [0, 1].

@ Normalizing input data helps prevent issues with different
input feature scales and leads to faster convergence.

@ Normalization methods:

e Min-max normalization to [—1, 1] - suitable for uniformly
distributed data without outliers

e Standard deviation-based normalization - useful when data
contains extreme values and outliers
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Discussion on the Gradient Descent Method

@ Unlike a linear neuron, the situation is more complex because
the loss function may not be quadratic.

o Gradient descent is more prone to getting stuck in local
minima.

@ For general neurons, gradient descent is even more sensitive to
hyperparameter selection and data preprocessing
(normalization) compared to linear neurons.
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Discussion on the Gradient Descent Method

Risk of Neuron Saturation During Training:
@ When weights become "too large,” compared to the weight
updates, the neuron "stops learning”
What affects the magnitude of the weight update?

AW() + e (€0)(de — ye) KT

@ (d: — yt) ... difference between actual and desired output

@ « ... learning rate

e X ... input sample — importance of normalization

o /(&) ... for sigmoid/hyperbolic tangent, the derivative
decreases as the sample moves further from the decision

boundary

. — = -

1 / L

L -~ . . 32/46
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Discussion on the Gradient Descent Method

How to Avoid Neuron Saturation?

@ Normalize input data "around zero"and initialize weights
"around zero” ... both lead to an expected zero potential and
fast initial learning.

@ Handle outliers properly.

@ For sigmoid/hyperbolic tangent, consider using a loss function
other than SSE, such as cross-entropy:

E=- Z (dplogyp+ (1 —dp)log(l —y,)) (for sigmoid)
p

B 1+dp 1+y, 1—-4d, 1—-yp
E-—ij( 5 log 5 + 5 log 5 (for tanh)

Interpretation: How much does the predicted class
probability (e.g., 0.9 vs. 0.1) differ from the ideal probability
(1vs.0)?
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Discussion on the Gradient Descent Method

Cross-Entropy Loss Function

o Highly beneficial for linear classification when combined with
sigmoid or tanh activation functions.
e For sigmoid:

E=— Z (dplogyp + (1 — dp)log(l —yp))

@ The gradient is:
8Ep _ dp (1 - dp)

a7 a Yo (1=yp)
@ Substituting into the weight update formula eliminates
problematic terms:

OE, OE,dy, 0¢, (1 —d, d,,>
= hf AL T — — | Yp(1=yp)xpi = (Yp—dp)Xpi
aW’_ 8)/p agp aW,' 1 — Yp Yo P( P) 14 ( P P) P

— This removes problematic terms, reducing the risk of saturation. 2446
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Examples - 1. Gradient Descent for a Perceptron with
Hyperbolic Tangent Activation Function

tanh_perceptron.ipynb

e Simple examples: Gallbladder (Example 1), Pub (Example 2)
o Observation: The gradient-based method successfully handles
these tasks, although training takes longer and requires careful
tuning of hyperparameters.
o Note that the neuron’s outputs are not exactly 1 and -1.
@ Linear regression task (Example 3)
o Observation: The tanh activation function is unsuitable for
linear regression tasks.
e Randomly generated overlapping clusters (Example 4)
o Observation: The gradient descent method again handles the
task well; the same observations as in Examples 1 and 2 apply.
e + Demonstration that poorly initialized weights pose a
significant problem for gradient descent.
e + Demonstration that with limited data, overfitting may

occur, emphasizing the need for early stopping. N


https://github.com/reitezuz/18NES1-2025-/blob/main/week3/tanh_perceptron.ipynb
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Examples - Gradient Descent for a Perceptron with
Hyperbolic Tangent Activation Function

tanh_perceptron.ipynb

@ Unnormalized data (Example 5)

o Demonstration that unnormalized or biased data can

significantly hinder the performance of gradient descent.
@ Outlier data (Example 6)

e Demonstration that outliers do not necessarily cause problems
for iterative gradient descent when using the hyperbolic
tangent activation function.

o However, we will see that outliers can negatively affect data
normalization based on min-max scaling.

3646
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Today's Lecture

© Perceptron with a Continuous Activation Function

e The most common activation functions for a perceptron
e Training a general perceptron using gradient descent

@ Neural network with a single layer of neurons
o Feature engineering
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Neural Network with a Single Layer of Neurons

© Neurons with a linear activation function
— Multidimensional Linear Regression
e Linear neural network
@ Neurons with a logistic or tanh activation function
— Linear classification into multiple classes (pattern
recognition task)
e Single-layer perceptron
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Interlude: Feature Engineering

Objective:

@ Prepare input data so that the neural network model can learn
from it and learn effectively.

What does feature engineering include?

@ Vectorization: Perceptrons and perceptron networks work
with numerical vectors — input samples must be converted
into numerical vectors.

@ Normalization: Numerical feature values should be
normalized (ideally to the range [—1, 1]).

@ Handling missing or incorrect values, noise, and outliers.

@ Selecting relevant features (feature selection) and creating
new features.
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Interlude: Feature Engineering

@ Objective: Prepare input data so that the neural network
model can learn from it and learn effectively.
o Improved convergence: Faster and more stable learning
process.
e Increased predictive power: The model better recognizes
hidden patterns in the data.
o Noise reduction: Eliminating irrelevant or redundant features.

Question about vectorization:
@ How to handle categorical feature values?
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Feature Engineering

Motivating Example: Multi-Class Classification with
Categorical Features

Size Fur Speaks? Movement | Class
Small  Short No Runs Cat
Large Long No Runs Dog
Small None Yes Flies Parrot
Medium  Short No Runs Cat
Small  None No Swims Carp

How to handle this?
@ First, convert categorical feature values to numerical values:
e Ordinal encoding, one-hot encoding, embeddings, etc.

@ Then, optionally normalize the values.
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Feature Engineering - Converting Categorical Variables
to Numerical Values

Ordinal (Label) Encoding
@ Suitable for categories with a natural order, e.g., low, medium,
high, and for binary categories, e.g., left, right.
o Low =0, Medium=1, High=?2
o Left =0, Right=1
@ Values can be further normalized to the range [—1,1]:
o Low =-1, Medium=10, High=1
o Left =-1, Right=1
@ Not suitable for independent categories — such encoding
can be misleading for the model:
e Cat =0, Dog =1, Parrot =2
o Is a dog something between a cat and a parrot?
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Feature Engineering - Converting Categorical Variables

to Numerical Values

One-hot Encoding
@ Suitable for independent categories, e.g., car color, animal
type
e Red — [1,0,0], Blue —[0,1,0], Green — [0,0,1]
e Dog —[1,0,0,0], Parrot — [0,1,0,0], Cat
—10,0,1,0]  Carp — [0,0,0,1]
@ Optionally, we can normalize the values:
o Red — [1,—-1,-1], Blue — [-1,1,-1], Green
- [_1a _17 1]
Embeddings

@ Used for more complex relationships between categorical
values, e.g., representing words and sentences in natural
language processing
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Feature Engineering

Motivating Example: Multi-Class Classification with
Categorical Features

Size Fur Speaks? | Class
Small  Short No Cat
Large Long No Dog
Small None Yes Parrot
Medium  Short No Cat

Size Fur Speaks?

Cat Dog Parrot Carp

-1 0 -1
1 1 -1
-1 -1 1
0 0 -1

1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
1 -1 -1 -1

Example: categorical_values.ipynb
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Feature Engineering

Example: Multi-Class Classification

with Categorical Features

Size Fur Speaks? | Cat Dog Parrot Carp
-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1

How do we train the model?

@ Train a separate neuron for each category (one at a time) and

merge the results...

Size Fur Speaks? | Cat
-1 0 -1 1
0 1 -1 -1
-1 -1 1 -1
0 0 -1 1

45 /46



Neural Networks 1 - Perceptrons with continuous activations
Single-Layer Neural Network
Feature Engineering

Feature Engineering

Example: Multi-Class Classification with Categorical Features

Size Fur Speaks? | Cat Dog Parrot Carp
-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1

How do we train the model?

@ Better approach: Construct a neural network with a single
layer of neurons and train it all at once.
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