
Neural Networks 1 - Perceptrons with continuous activations

Review - Linear Neuron

Neural Networks 1 - Perceptrons with continuous
activations

18NES1 - Lecture 5, Summer semester 2024/25

Zuzana Peťŕıčková

March 18, 2025

1 / 46

Neural Networks 1 - Perceptrons with continuous activations

Review - Linear Neuron

Review of the Previous Lecture

Linear Neuron and the Linear Regression Task

Internal potential: ξ =
∑n

i=1 wixi + w0

Output: y = ξ

y

y = w1.x1 + w0

x-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

We fit the points in the
input space with a
hyperplane (a line, a plane,
etc.).

We assume a linear
relationship between the
input variables x1, ..., xn
and the output y .

2 / 46

Neural Networks 1 - Perceptrons with continuous activations

Review - Linear Neuron

Review of the Previous Lecture

Linear Neuron and the Linear Regression Task

During training, we minimize the difference between the
actual and desired output for each training sample.
Instead of SAE (sum of absolute errors), we minimize the
quadratic error function (sum of squared errors, SSE):

E =
1

2

∑
p

e2p =
1

2

∑
p

(dp − yp)2

→ Least Squares Methods (LSQ)

0.8 1.0 1.2 1.4 1.6 1.8
X

6

7

8

9

10

y

Learning algorithms for a linear
neuron (linear regression):

LSQ Method - based on
explicit computation.
Gradient Descent Method - a
local optimization method (with
broader applicability). 3 / 46

Neural Networks 1 - Perceptrons with continuous activations

Review - Linear Neuron

Training a Linear Neuron Using Gradient Descent

General Algorithm Scheme (Gradient Descent)

Problem Definition:
We have a function f (~x) : Rn → R
We seek ~x such that f (~x) is
minimized

Solution (gradient descent
method): 3 2 1 0 1 2 3

x

0

2

4

6

8

10

12

14

16

f(x
)

1 Start at an (random) initial point ~x(0)

2 Compute the gradient: ∇f (~x) =
(
∂f
∂x1
, ∂f∂x2 , . . . ,

∂f
∂xn

)
The

gradient represents the direction and magnitude of the
greatest increase in f (~x)

3 Iteratively move in small steps opposite to the gradient
direction: ~x(t + 1) = ~x(t)− α∇f (~x) α is a small positive
number (step size, learning rate)

4 For a single input feature: xi (t + 1) = xi (t)− α ∂f
∂xi 4 / 46

Neural Networks 1 - Perceptrons with continuous activations

Review - Linear Neuron

Training a Linear Neuron Using Gradient Descent

We minimize the SSE loss function in weight space:

E (~w) =
1

2

N∑
p=1

(dp − yp)2 =
1

2

N∑
p=1

(
dp −

n∑
i=0

wixpi

)2

=
N∑

p=1

Ep(~w)

Ep(~w) is the error function for a single sample

The loss function is quadratic,
convex, meaning gradient descent
should reliably find its global
minimum with appropriate
parameter tuning.

5 / 46

Neural Networks 1 - Perceptrons with continuous activations

Review - Linear Neuron

Training a Linear Neuron Using Gradient Descent

General Algorithm Scheme (Gradient Descent)
1 Initialize weights with small random values:
~w(0) = (w0,w1, ...,wn)T

Initialize learning rate: α0, where 1� α0 > 0.
2 Present the next training sample (~xt , dt) and compute the

neuron output:

yt = ~xt ~w

3 Update weights (move in the direction opposite to the
gradient of the loss function):

~w(t + 1) = ~w(t)− α∇Et(~w) = ~w(t) + αt(dt − yt)~x
T
t

4 Optionally update the learning rate: αt → αt+1.
5 If stopping criteria are not met, return to step 2.

6 / 46

Neural Networks 1 - Perceptrons with continuous activations

Review - Linear Neuron

Gradient Descent

Previously, we explored different variants of gradient descent,
its hyperparameters, and demonstrated the importance of
proper hyperparameter tuning through examples.

Conclusion
Gradient descent can solve linear regression as effectively as
the classical LSQ method, BUT it is more challenging to
apply:

It is a local optimization method: results may vary across runs.
It is highly sensitive to hyperparameter tuning, weight
initialization, and data preprocessing.

Compared to LSQ, gradient descent is:
More robust to numerical errors.
Applicable to a broader range of problems where LSQ
struggles:

Large datasets (many features or samples).
Data with outliers or with significant noise.

7 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Today’s Lecture

1 Perceptron with a Continuous Activation Function

The most common activation functions for a perceptron
Training a general perceptron using the gradient descent
method

2 Neural network with a single layer of neurons

8 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

From Linear Regression to a More General Perceptron
Model

Using gradient descent, we can train a linear neuron and solve
the linear regression problem.

Question: Could the gradient descent method be used for
other activation functions?

If so, we could solve nonlinear regression or classification tasks:

y

y = w1.x1 + w0

x-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

y

x-3 -2 -1 0 1 2 3

-2

-1

1

2

3

x

x2

w1x1+w2x2 -h = 0

x1-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

9 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

From Linear Regression to a More General Perceptron
Model

Question: Could the gradient descent method be used for
other activation functions?

Yes, but only for certain types: the activation function must
be continuous and differentiable.

→ It cannot be applied to a step function: (Question: What is its
derivative?)

ξ

y

→ Could we replace the step function with another activation
function that is continuous and differentiable?

10 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Searching for Continuous Functions that Resemble the
Step Activation Function

For the bipolar neuron model

f (ξ) = sign(ξ) =

 1 for ξ > 0 ... active
0 for ξ = 0 ... silent
−1 for ξ < 0 ... passive

For the binary neuron model

f (ξ) = signum(ξ) =

 1 for ξ > 0 ... neuron is active
0.5 for ξ = 0 ... neuron is silent
0 for ξ < 0 ... neuron is passive

ξ

y

ξ

y

11 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Searching for Continuous Functions that Resemble the
Step Activation Function

Requirements:

f (y) is defined and continuous on (−∞,∞)

limy→−∞f (y) = m < M = limy→∞f (y)

f (y) ≈ m ... neuron is passive

f (y) ≈ M ... neuron is active

Typical examples:

(m,M) = (−∞,∞) ... linear function

(m,M) = (0, 1) - binary model ... sigmoid function

(m,M) = (−1, 1) - bipolar model ... hyperbolic tangent (tanh)

12 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Continuous Activation Functions

Linear (Identity)

f (ξ) = ξ

Usage

Not suitable for classification tasks

Highly suitable for regression tasks

Where it is used:

Single-layer linear neural networks

Output layer of multilayer/deep networks for regression tasks

13 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Continuous Activation Functions

Sigmoidal

f (ξ) = 1
1+e−λξ ... logistic

sigmoid (logsig)

binary model

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0 = 1
= 2
= 5

Hyperbolic Tangent

f (ξ) = 1−e−2λξ

1+e−2λξ ... tanh

bipolar model

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 = 1
= 2
= 5

→ ”Smoothed”versions of the step activation function

14 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Continuous Activation Functions

Sigmoid and Hyperbolic Tangent - Geometric Interpretation:
x2

w1.x1 +w2x2 + w0 = 0

x1-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

... Linear classification task

With a sigmoidal activation function, the neuron’s output can
be directly interpreted as the probability that the input
belongs to a given class.

15 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Continuous Activation Functions

Sigmoidal

f (ξ) = 1
1+e−λξ ... logistic

sigmoid (logsig)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0 = 1
= 2
= 5

Hyperbolic Tangent

f (ξ) = 1−e−2λξ

1+e−2λξ ... tanh

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 = 1
= 2
= 5

Parameter λ - Slope

Determines classification uncertainty near decision boundaries

λ→∞ ... step activation function
Smaller λ ... wider boundary between classes
λ→ 0 ... neuron does not distinguish between the classes
(output is always 0.5 or 0)
Typical choices: λ = 1 or λ = 2 for logsig, λ = 1 for tanh

16 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Continuous Activation Functions

Sigmoidal

f (ξ) = 1
1+e−λξ ... logistic

sigmoid (logsig)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0 = 1
= 2
= 5

Hyperbolic Tangent

f (ξ) = 1−e−2λξ

1+e−2λξ ... tanh

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 = 1
= 2
= 5

Usage

Suitable for classification tasks (smoothed threshold function)

Used in hidden layers of feedforward and deep neural
networks, as well as in recurrent networks

17 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Continuous Activation Functions

Rectified Linear Unit (ReLU)

f (ξ) = max(0, ξ) =

{
ξ, for ξ > 0

0, for ξ ≤ 0

Not differentiable everywhere, but computationally efficient

Widely used in hidden layers of deep neural networks

Softplus (Smooth Alternative to ReLU)

f (ξ) = ln(1 + eξ)

Behaves like ReLU for large ξ

Behaves like a sigmoid function for small ξ

Less commonly used than ReLU 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

18 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Local Activation Functions

Radial Basis Function
(Gaussian)

f (ξ) = e−
ξ2

α ... radbas

ξ = |~x−~w |
β

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Triangular Function

f (ξ) =

{
1− |ξ| for |ξ| ≤ 1

0 otherwise
... tribas

ξ = |~x−~w |
β

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

→ Networks with local units, Radial Basis Function (RBF)
networks

19 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Other Activation Functions

Stochastic Neuron Model: Stochastic Activation Function

f (ξ) = 1 with probability P(ξ)

f (ξ) = 0 with probability 1− P(ξ)

The probability function P(ξ) is most commonly a sigmoid
function:

P(ξ) = 1

1+e−
ξ
T

T ... pseudo-temperature

→ Boltzmann Machines, Deep Belief Networks (DBN)

Simplified explanation: Compute the sigmoid function value,
interpret it as a probability, and use it to randomly determine
the neuron’s output (by tossing a coin)

20 / 46

Neural Networks 1 - Perceptrons with continuous activations

Continuous Activation Functions

Other Activation Functions

Softmax

A specialized activation function for multi-class classification
A generalization of the argmax function, converting numerical
values into probabilities
f : Rn → Rn,

f (xi) =
exi∑N
j=1 e

xj

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.000

0.002

0.004

0.006

0.008

0.010

→ Suitable only for the output layer in classification tasks
21 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Gradient Descent for Training Neurons with a
Continuous Activation Function

The gradient descent method can be used to train neurons with
any continuous and differentiable activation function f (e.g.,
sigmoid function, hyperbolic tangent):

Neuron output (for a single sample):
y = f (ξ) = f (

∑n
i=0 wixi) = f (~x ~w)

Matrix form (for the entire training set): ~y = f (X ~w) (~w is a
column vector)

1 We aim to minimize the sum of squared errors (SSE) in
weight space:

E (~w) =
1

2

N∑
p=1

(dp − yp)2 =
1

2

N∑
p=1

(
dp − f

(
n∑

i=0

wixpi

))2

=
N∑

p=1

Ep(~w) ...Ep(~w) is the error function for a single sample22 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Gradient Descent for Training Neurons with a
Continuous Activation Function

We minimize the sum of squared errors (SSE) in weight space:

E (~w) =
1

2

N∑
p=1

(dp − yp)2 =
1

2

N∑
p=1

(
dp − f

(
n∑

i=0

wixpi

))2

Since the error function may no longer be quadratic, gradient
descent may fail to find the global minimum, even with
optimal hyperparameter settings.

23 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Gradient Descent for Neurons with a Continuous
Activation Function

1. First, compute the error function

Ep(~w) =
1

2
(dp − yp)2 =

1

2
(dp − f (ξp))2

=
1

2

(
dp − f

(
n∑

i=0

wixpi

))2

Compute its partial derivatives:

∂Ep

∂wi
=
∂Ep

∂yp

∂yp
∂ξp

∂ξp
∂wi

= −(dp − yp)f ′(ξp)xpi

24 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Gradient Descent for Neurons with a Continuous
Activation Function

1. Compute the partial derivatives of the error function:

∂Ep

∂wi
= −(dp − yp)f ′(ξp)xpi

2. Formulate the weight update rule:

wi (t + 1) = wi (t)− α∂Ep

∂wi
= wi (t) + αf ′(ξp)(dp − yp)xpi

For the weight vector:

~w(t + 1) = ~w(t)− α∇Ep(~w) = ~w(t) + α(dp − yp)f ′(ξp)~xTp

25 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Gradient Descent for Neurons with a Continuous
Activation Function

Computing the Derivative of the Activation Function
Sigmoidal Function ... logsig

f (ξp) =
1

1 + e−λξp

f ′(ξp) = λyp(1− yp)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

Hyperbolic Tangent ... tanh

f (ξ) =
1− e−2λξ

1 + e−2λξ

f ′(ξp) = λ2(1 + yp)(1− yp)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

26 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Gradient Descent for Neurons with a Continuous
Activation Function

General Algorithm Schema (GD, Gradient Descent)
1 Initialize weights with small random real values:
~w(0) = (w0,w1, ...,wn)T

Initialize the learning rate: α0 such that 1� α0 > 0.

2 Present the next training sample (~xt , dt) and compute the
potential and actual neuron output:
ξt = ~xt ~w
yt = f (ξt)

3 Update the weights:

~w(t + 1) = ~w(t) + αt f
′(ξt)(dt − yt)~x

T
t

4 Optionally update the learning rate: αt → αt+1.

5 If stopping criteria are not met, return to step 2.
27 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Discussion on the Gradient Descent Method

Different Learning Strategies

Pattern Presentation Strategies:
1 Iterative sample presentation (Online GD)

Fast learning (in terms of the number of epochs) but relatively
unstable (the algorithm reduces error for the current sample
→ error may increase for other samples)

2 Batch sample presentation (Batch GD)

More stable learning but often leads to ”worse”solutions
Efficient for small datasets, but requires more memory for
large datasets

3 Mini-batch sample presentation (SGD, Stochastic GD)

A compromise solution, widely used in deep networks

Learning Rate Strategies:
Constant learning rate - must be set appropriately
Adaptive learning rate - e.g., decreasing over time; the decay
rate must be properly tuned

28 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Discussion on the Gradient Descent Method

Different Learning Strategies

Weight Initialization:
Weights are initialized with small random values (ideally
centered around 0)
Too large or biased weights make perceptron training difficult

Stopping Criteria:
1 A predefined maximum number of epochs
2 When the average error is sufficiently small ... E < Emin

3 When the validation set error stops decreasing ... early
stopping

4 When the weight update ∆w is too small ... |∆w | < δmin

It is also possible to use alternative loss functions (e.g.,
cross-entropy for classification) or regularization terms

29 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Discussion on the Gradient Descent Method

Importance of Preprocessing Training Data:

For efficient and fast learning using gradient descent, both
initial weights and input samples should have values in a small
range, e.g., within [−1, 1] or [0, 1].

Normalizing input data helps prevent issues with different
input feature scales and leads to faster convergence.

Normalization methods:

Min-max normalization to [−1, 1] - suitable for uniformly
distributed data without outliers
Standard deviation-based normalization - useful when data
contains extreme values and outliers

30 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Discussion on the Gradient Descent Method

Unlike a linear neuron, the situation is more complex because
the loss function may not be quadratic.

Gradient descent is more prone to getting stuck in local
minima.

For general neurons, gradient descent is even more sensitive to
hyperparameter selection and data preprocessing
(normalization) compared to linear neurons.

31 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Discussion on the Gradient Descent Method

Risk of Neuron Saturation During Training:

When weights become ”too large,”compared to the weight
updates, the neuron ”stops learning”

What affects the magnitude of the weight update?

4~w(t) + αt f
′(ξt)(dt − yt)~x

T
t

(dt − yt) ... difference between actual and desired output
α ... learning rate
~xTt ... input sample → importance of normalization
f ′(ξt) ... for sigmoid/hyperbolic tangent, the derivative
decreases as the sample moves further from the decision
boundary

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 = 1
= 2
= 5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

x2

w1.x1 +w2x2 + w0 = 0

x1-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

→ Risk of neuron saturation
32 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Discussion on the Gradient Descent Method

How to Avoid Neuron Saturation?

Normalize input data ”around zero”and initialize weights
”around zero”... both lead to an expected zero potential and
fast initial learning.
Handle outliers properly.
For sigmoid/hyperbolic tangent, consider using a loss function
other than SSE, such as cross-entropy:

E = −
∑
p

(dp log yp + (1− dp) log(1− yp)) (for sigmoid)

E = −
∑
p

(
1 + dp

2
log

1 + yp
2

+
1− dp

2
log

1− yp
2

)
(for tanh)

Interpretation: How much does the predicted class
probability (e.g., 0.9 vs. 0.1) differ from the ideal probability
(1 vs. 0)?

33 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Discussion on the Gradient Descent Method

Cross-Entropy Loss Function

Highly beneficial for linear classification when combined with
sigmoid or tanh activation functions.
For sigmoid:

E = −
∑
p

(dp log yp + (1− dp) log(1− yp))

The gradient is:

∂Ep

∂yp
= −dp

yp
+

(1− dp)

(1− yp)

Substituting into the weight update formula eliminates
problematic terms:

∂Ep

∂wi
=
∂Ep

∂yp

∂yp
∂ξp

∂ξp
∂wi

=

(
1− dp
1− yp

− dp
yp

)
yp(1−yp)xpi = (yp−dp)xpi

→ This removes problematic terms, reducing the risk of saturation.
34 / 46

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Examples - 1. Gradient Descent for a Perceptron with
Hyperbolic Tangent Activation Function

tanh perceptron.ipynb

Simple examples: Gallbladder (Example 1), Pub (Example 2)
Observation: The gradient-based method successfully handles
these tasks, although training takes longer and requires careful
tuning of hyperparameters.
Note that the neuron’s outputs are not exactly 1 and -1.

Linear regression task (Example 3)
Observation: The tanh activation function is unsuitable for
linear regression tasks.

Randomly generated overlapping clusters (Example 4)
Observation: The gradient descent method again handles the
task well; the same observations as in Examples 1 and 2 apply.
+ Demonstration that poorly initialized weights pose a
significant problem for gradient descent.
+ Demonstration that with limited data, overfitting may
occur, emphasizing the need for early stopping.

35 / 46

https://github.com/reitezuz/18NES1-2025-/blob/main/week3/tanh_perceptron.ipynb

Neural Networks 1 - Perceptrons with continuous activations

Gradient Descent for Training Neurons with a Continuous Activation Function

Examples - Gradient Descent for a Perceptron with
Hyperbolic Tangent Activation Function

tanh perceptron.ipynb

Unnormalized data (Example 5)

Demonstration that unnormalized or biased data can
significantly hinder the performance of gradient descent.

Outlier data (Example 6)

Demonstration that outliers do not necessarily cause problems
for iterative gradient descent when using the hyperbolic
tangent activation function.
However, we will see that outliers can negatively affect data
normalization based on min-max scaling.

36 / 46

https://github.com/reitezuz/18NES1-2025-/blob/main/week3/tanh_perceptron.ipynb

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Today’s Lecture

1 Perceptron with a Continuous Activation Function

The most common activation functions for a perceptron
Training a general perceptron using gradient descent

2 Neural network with a single layer of neurons

Feature engineering

37 / 46

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Neural Network with a Single Layer of Neurons

f
x1

xn
ym

wnm

w01

w0m

f

w11

wn1

w1m

y1

1 Neurons with a linear activation function
→ Multidimensional Linear Regression

Linear neural network

2 Neurons with a logistic or tanh activation function
→ Linear classification into multiple classes (pattern
recognition task)

Single-layer perceptron

38 / 46

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Feature Engineering

Interlude: Feature Engineering

Objective:

Prepare input data so that the neural network model can learn
from it and learn effectively.

What does feature engineering include?

Vectorization: Perceptrons and perceptron networks work
with numerical vectors → input samples must be converted
into numerical vectors.

Normalization: Numerical feature values should be
normalized (ideally to the range [−1, 1]).

Handling missing or incorrect values, noise, and outliers.

Selecting relevant features (feature selection) and creating
new features.

39 / 46

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Feature Engineering

Interlude: Feature Engineering

Objective: Prepare input data so that the neural network
model can learn from it and learn effectively.

Improved convergence: Faster and more stable learning
process.
Increased predictive power: The model better recognizes
hidden patterns in the data.
Noise reduction: Eliminating irrelevant or redundant features.

Question about vectorization:

How to handle categorical feature values?

40 / 46

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Feature Engineering

Feature Engineering

Motivating Example: Multi-Class Classification with
Categorical Features

Size Fur Speaks? Movement Class
Small Short No Runs Cat
Large Long No Runs Dog
Small None Yes Flies Parrot

Medium Short No Runs Cat
Small None No Swims Carp

... ...
How to handle this?

1 First, convert categorical feature values to numerical values:

Ordinal encoding, one-hot encoding, embeddings, etc.

2 Then, optionally normalize the values.

41 / 46

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Feature Engineering

Feature Engineering - Converting Categorical Variables
to Numerical Values

Ordinal (Label) Encoding

Suitable for categories with a natural order, e.g., low, medium,
high, and for binary categories, e.g., left, right.

Low = 0, Medium = 1, High = 2
Left = 0, Right = 1

Values can be further normalized to the range [−1, 1]:

Low = -1, Medium = 0, High = 1
Left = -1, Right = 1

Not suitable for independent categories → such encoding
can be misleading for the model:

Cat = 0, Dog = 1, Parrot = 2
Is a dog something between a cat and a parrot?

42 / 46

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Feature Engineering

Feature Engineering - Converting Categorical Variables
to Numerical Values

One-hot Encoding

Suitable for independent categories, e.g., car color, animal
type

Red → [1, 0, 0], Blue → [0, 1, 0], Green → [0, 0, 1]
Dog → [1, 0, 0, 0], Parrot → [0, 1, 0, 0], Cat
→ [0, 0, 1, 0] Carp → [0, 0, 0, 1]

Optionally, we can normalize the values:

Red → [1,−1,−1], Blue → [−1, 1,−1], Green
→ [−1,−1, 1]

Embeddings

Used for more complex relationships between categorical
values, e.g., representing words and sentences in natural
language processing

43 / 46

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Feature Engineering

Feature Engineering

Motivating Example: Multi-Class Classification with
Categorical Features

Size Fur Speaks? Class
Small Short No Cat
Large Long No Dog
Small None Yes Parrot

Medium Short No Cat
... ...

Size Fur Speaks? Cat Dog Parrot Carp
-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1
...

Example: categorical values.ipynb
44 / 46

https://github.com/reitezuz/18NES1-2025-/blob/main/week4/categorical_values.ipynb

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Feature Engineering

Feature Engineering

Example: Multi-Class Classification with Categorical Features
Size Fur Speaks? Cat Dog Parrot Carp

-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1
...

How do we train the model?
1 Train a separate neuron for each category (one at a time) and

merge the results...

Size Fur Speaks? Cat
-1 0 -1 1
0 1 -1 -1
-1 -1 1 -1
0 0 -1 1
... ...

45 / 46

Neural Networks 1 - Perceptrons with continuous activations

Single-Layer Neural Network

Feature Engineering

Feature Engineering

Example: Multi-Class Classification with Categorical Features
Size Fur Speaks? Cat Dog Parrot Carp

-1 0 -1 1 -1 -1 -1
1 1 -1 -1 1 -1 -1
-1 -1 1 -1 -1 1 -1
0 0 -1 1 -1 -1 -1
...

How do we train the model?

2 Better approach: Construct a neural network with a single
layer of neurons and train it all at once.

46 / 46

	Review - Linear Neuron
	Continuous Activation Functions
	Continuous Activation Functions
	Gradient Descent for Training Neurons with a Continuous Activation Function
	Single-Layer Neural Network
	Feature Engineering

