
Neural Networks 1 - Linear Neurons

Review - Perceptron with a Step Activation Function and Its Learning Algorithms

Neural Networks 1 - Linear Neurons
18NES1 - Lecture 4, Summer semester 2024/25

Zuzana Peťŕıčková

March 11, 2025

1 / 41



Neural Networks 1 - Linear Neurons

Review - Perceptron with a Step Activation Function and Its Learning Algorithms

What We Covered Last Time

Perceptron with a Step Activation Function and Its Learning
Algorithms

Internal potential:
ξ =

∑n
i=1 wixi + w0

Output: y = f (ξ)

x1

x1

x2

w2

wn

w1

y

w0

Learning algorithms:

Rosenblatt’s learning
algorithm and its
variants
Hebbian learning

Step activation function:

f (ξ) =


1 for ξ > 0 ... neuron is active
−1 for ξ < 0 ... neuron is passive (inactive)
0 for ξ = 0 ... neuron is silent

2 / 41



Neural Networks 1 - Linear Neurons

Review - Perceptron with a Step Activation Function and Its Learning Algorithms

Examples - Various Practical Tasks - Completion

Example 5 - Letters letters example.ipynb

We use the prepared dataset letters.csv
The letters were segmented from letters.png
Explore the dataset and visualize some of the letters
Create a test set: data with added noise or subsequently
smoothed
Train a perceptron using different learning algorithms (and
their variants) to recognize individual letters
Determine the classification error on the training set as well as
on the test sets (optionally include the number of epochs /
training time)
How much noise in the data could the perceptron still handle?
Identify which letters the perceptron had the most trouble
recognizing
Which learning algorithm performed the best?

3 / 41

https://github.com/reitezuz/18NES1-2025-/blob/main/week2/letters_example.ipynb


Neural Networks 1 - Linear Neurons

Review - Perceptron with a Step Activation Function and Its Learning Algorithms

Examples - Various Practical Tasks - Completion

Example 6 - Handwritten Digits digits example.ipynb

We use the prepared dataset OcrData.csv containing
handwritten digits

Explore the dataset and visualize some digits (use the
provided script)

Train a perceptron using different learning algorithms (and
their variants) to recognize individual digits

Determine (and compare) the classification error on the
training set (optionally include the number of epochs /
training time)

Identify which digits the perceptron had the most trouble
recognizing

Which learning algorithm performed the best?

4 / 41

https://github.com/reitezuz/18NES1-2025-/blob/main/week2/digits_example.ipynb


Neural Networks 1 - Linear Neurons

Review - Perceptron with a Step Activation Function and Its Learning Algorithms

Perceptron with a Step Activation Function

Applications:

Linear classifier for two classes

Implementation of logical functions

Problem: If the data is not linearly
separable (e.g., XOR)
What can we do?

x2

w.x + w0 = 0

x1-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

1 Quadratic or cubic expansion of the feature space
e.g., x1, x2, x

2
1 , x

2
2 , x1x2

2 A neural network with more perceptrons and layers ... but how
do we train it? :(

→ What if we use a continuous activation function instead of a
step function?
→ This allows us to solve other types of tasks (e.g., regression).

5 / 41



Neural Networks 1 - Linear Neurons

Review - Perceptron with a Step Activation Function and Its Learning Algorithms

Today’s Lesson

1 Linear Neuron and the Task of Linear Regression
Training a linear neuron using the Least Squares (LSQ) method
Training a linear neuron using the Gradient Descent method

6 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Linear Neuron

One of the oldest models: ADALINE (Adaptive Linear
Element, 1960, Widrow-Hoff)

Identity activation function: f (ξ) = ξ

Neuron output:
y = ξ =

∑n
i=1 wixi + w0 = ~x ~w + w0

(~w is a column vector)

Learning objective:

We have a training dataset in the form T = (X , ~d)
x11 ... x1n d1
... ... ...
xN1 ... xNn dN

Neuron output in matrix form: ~y = X ~w + w0

→ We seek ~w such that ideally: ~d = ~y , i.e., ~d = X ~w + w0

This is a linear regression problem. 7 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Linear Neuron - Geometric Interpretation

For a single input feature:

Neuron output: y = w1x + w0

(xk , dk) are points in the plane
We fit the points with a straight line:

y

y = w1.x1 + w0

x-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

x

In general: We fit the points with a hyperplane
y = w1x1 + · · ·+ wnxn + w0

assuming a linear relationship between input variables
x1, ..., xn and the output y 8 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

How to Train a Linear Neuron (i.e., Linear Regression
Model)?

Given a training sample: (~xp, dp)
Compute the actual neuron output: yp = ~xp ~w + w0

The actual and desired outputs differ:

yp = dp + ep where ep is the error for a single sample

We want the actual and desired outputs to be as close as
possible for each training sample:

0.8 1.0 1.2 1.4 1.6 1.8
X

6

7

8

9

10

y

9 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Training a Linear Neuron (i.e., Linear Regression Model)

How do we define an error function to minimize during
training?

1 SAE (Sum of Absolute Errors)

E =
∑
p

|ep| =
∑
p

|dp − yp|

Disadvantage: Absolute function is not continuously
differentiable, making optimization difficult.

2 SSE/SSQ (Sum of Squared Errors) – Least Squares Method

E =
1

2

∑
p

e2p =
1

2

∑
p

(dp − yp)2

Quadratic function is continuously differentiable, allowing for
efficient optimization
It penalizes large deviations more strongly than small ones
making it sensitive to outliers

10 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Training a Linear Neuron (i.e., Linear Regression Model)

Least Squares Method

Minimize

E =
1

2

∑
p

(dp − yp)2

How do we do this?

1 LSQ method – based on an explicit calculation

2 Gradient method (steepest descent method)

11 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron - Learning Using the LSQ Method

We have an extended training dataset in the form T = (X , ~d)
x10 = 1 x11 ... x1n d1

... ... ... ...
xN0 = 1 xN1 ... xNn dN

→ We seek ~w such that: ~d = ~y , i.e., ~d = X ~w

This leads to solving the system of equations:
w0x10 + w1x11 + ... + wnx1n = d1

... ... ... ... ... ...
w0xN0 + w1xN1 + ... + wnxNn = dN

12 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron - Learning Using the LSQ Method

When does the system have a unique solution?

Condition: The columns of X must be linearly independent,
i.e., h(X ) = n + 1

Rank condition: h(X |~d) = h(X )

In general:

The system may have infinitely many solutions (or none)

The objective is to minimize the sum of squared errors:

1

2

N∑
p=1

(dp − yp)2 = min, ||X ~w − ~d ||2 = min

→ Setting the derivative of this function to zero, after some
algebraic manipulation, we obtain:

(XTX )~w − XT ~d = 0

13 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron - Learning Using the LSQ Method

When does the system have a unique solution?

Condition: The columns of X must be linearly independent,
i.e., h(X ) = n + 1
Rank condition: h(X |~d) = h(X )

In general:

The system may have infinitely many solutions (or none)
The objective is to minimize the squared error:

1

2

N∑
p=1

(dp − yp)2 = min, ||X ~w − ~d ||2 = min

Alternative derivation (Gauss):

X ~w = ~d

XT (X ~w) = XT ~d

(XTX )~w = XT ~d
14 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron - Learning Using the LSQ Method

(XTX )~w = XT ~d

1 If the inverse matrix exists, i.e., det(XTX ) 6= 0:

~w = (XTX )−1XT ~d

2 If det(XTX ) = 0 (the system has infinitely many or no
solutions):
→ Apply regularization (using the pseudoinverse matrix):

1 Tikhonov regularization (ridge regression):

~w = (XTX + λI )−1XT ~d , λ > 0

2 Moore-Penrose pseudoinverse (solution with the smallest
weights):

~w = lim
λ→0+

(XTX + λI )−1XT ~d

15 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron – Training with LSQ Method

Example 1 ... ~w = (XTX )−1XT ~d
x0 x1 x2 d

+1 -1 -1 +1
+1 -1 +1 +1
+1 +1 -1 +1
+1 +1 +1 -1

XTX =

 4 0 0
0 4 0
0 0 4



(XTX )−1 =

 1
4 0 0
0 1

4 0
0 0 1

4


16 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron – Training with LSQ Method

Example 1 ... ~w = (XTX )−1XT ~d
x0 x1 x2 d

+1 -1 -1 +1
+1 -1 +1 +1
+1 +1 -1 +1
+ 1 +1 +1 -1

~w =

 1
4 0 0
0 1

4 0
0 0 1

4

 1 1 1 1
−1 −1 1 1
−1 1 −1 1




1
1
1
−1



=

 1
4

1
4

1
4

1
4

−1
4 −1

4
1
4

1
4

1
4

1
4 −1

4
1
4




1
1
1
−1

 =

 1
2
−1

2
−1

2


17 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron – Training with LSQ Method

Example 2 ... ~w = (XTX )−1XT ~d
x0 x1 x2 d

+1 +1 -1 +1
+1 +1 +1 -1

XTX =

 2 2 0
2 2 0
0 0 2


h(XTX ) = 2→ det(XTX ) = 0→ (XTX )−1 does not exist

We apply regularization:

~w = (XTX + λI )−1XT ~d , λ > 0

~w = lim
λ→0+

(XTX + λI )−1XT ~d

18 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron – Training with LSQ Method

Example 2 ... ~w = (XTX + λI )−1XT ~d , λ > 0
x0 x1 x2 d

+1 +1 -1 +1
+1 +1 +1 -1

XTX + λI =

 2 + λ 2 0
2 2 + λ 0
0 0 2 + λ


After further computations:

(XTX + λI )−1 =

 2+λ
λ2+4λ

− 2
λ2+4λ

0

− 2
λ2+4λ

2+λ
λ2+4λ

0

0 0 1
2+λ



19 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron – Training with LSQ Method

Example 2 ... ~w = (XTX + λI )−1XT ~d = X+~d , λ > 0

X+ = (XTX + λI )−1XT =

 2+λ
λ2+4λ

− 2
λ2+4λ

0

− 2
λ2+4λ

2+λ
λ2+4λ

0

0 0 1
2+λ


 1 1

1 1
−1 1



=

 λ
λ2+4λ

λ
λ2+4λ

λ
λ2+4λ

λ
λ2+4λ

− 1
2+λ

1
2+λ

 =

 1
λ+4

1
λ+4

1
λ+4

1
λ+4

− 1
2+λ

1
2+λ



20 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Linear Neuron – Training with LSQ Method

Example 2 ... ~w = (XTX + λI )−1XT ~d = X+~d , λ > 0

λ = 1:

~w = X+~d =

 1
5

1
5

1
5

1
5

−1
3

1
3

( 1
−1

)
=

 0
0
−2

3


λ = 1

10 :

~w = X+~d =

 10
41

10
41

10
41

10
41

−10
21

10
21

( 1
−1

)
=

 0
0

−20
21


λ→ 0:

~w = X+~d =

 1
4

1
4

1
4

1
4

−1
2

1
2

( 1
−1

)
=

 0
0
−1


21 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Examples – Demonstration of LSQ Learning Algorithms
in Python

linear neuron.ipynb

LSQ method applied to Examples 1 and 2 from the slides

Three different algorithm implementations:

Using a library function (standard linear regression, LSQ)
Custom implementation using the pseudoinverse matrix
(Moore-Penrose pseudoinverse, roughly equivalent to the
library version)
Custom implementation using Tikhonov regularization
(coarser approximation but can handle “difficult” cases)

Observation: A linear neuron is not particularly suitable for
classification tasks

22 / 41

https://github.com/reitezuz/18NES1-2025-/blob/main/week3/linear_neuron.ipynb


Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Examples – Linear Regression Task

Example 3 and Example 4 – Linear Regression in
One-Dimensional and Two-Dimensional Input Space

Artificially generated data: training samples are generated
based on a known function with added random noise

By examining the learned weights, we can easily determine
whether the neuron has correctly learned the task

We can experiment with different levels of noise in the
training set

We will visualize the resulting regression line/plane

Questions: How close are the learned weights and bias to the
actual values? Check the error values (MSE and SSE).

23 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Learning Using the LSQ Method

Advantages and Disadvantages of LSQ Learning

Advantages:

Provides an exact analytical solution if the inverse of XTX
exists
Computationally efficient for small datasets (direct matrix
inversion)
Works well when data is linearly related
Can be extended with regularization techniques (e.g.,
Moore-Penrose, Tikhonov)

Disadvantages:

Sensitive to noise and outliers in the data
Computationally expensive for large datasets (inverting large
matrices is costly)
Regularization is necessary in ill-conditioned cases where XTX
is singular
Poor performance for classification tasks (linear regression is
not ideal for binary/multiclass classification) 24 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Introduction: Gradient Descent Method (Steepest
Descent)

Problem Definition:

We have a function f (~x) : Rn → R
We seek ~x such that f (~x) is minimized

→ Solution (gradient descent method):
3 2 1 0 1 2 3

x

0

2

4

6

8

10

12

14

16

f(x
)

1 Start at an (random) initial point ~x(0)

2 Compute the gradient: ∇f (~x) =
(
∂f
∂x1
, ∂f∂x2 , . . . ,

∂f
∂xn

)
The

gradient represents the direction and magnitude of the
greatest increase in f (~x)

3 Iteratively move in small steps opposite to the gradient
direction: ~x(t + 1) = ~x(t)− α∇f (~x) α is a small positive
number (step size, learning rate)

4 For a single input feature: xi (t + 1) = xi (t)− α ∂f
∂xi 25 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Challenges in Gradient Descent

Common Issues:

Small α leads to slow convergence
Large α causes oscillations (overshooting)
May converge to a local minimum instead of a global
minimum

How to Adjust the Learning Rate?

Start with an initial value 1� α0 > 0 and gradually decrease
it
Use a decreasing sequence:

∞∑
i=0

αi =∞,
∞∑
i=0

α2
i <∞

Heuristic approach:

αj =
α0

1 + j
(Robbins-Monro, 1951)

26 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Training a Linear Neuron Using Gradient Descent

Reminder: Linear Neuron (Linear Regression Model)

Neuron output: y = ξ =
∑n

i=0 wixi = ~x ~w
In matrix form: ~y = X ~w (~w is a column vector)

Least Squares Method

We want the neuron’s actual output yp to be as close as
possible to the desired output dp

0.8 1.0 1.2 1.4 1.6 1.8
X

6

7

8

9

10
y

Minimize the sum of squared errors (SSE):

E =
1

2

N∑
p=1

(dp − yp)2

27 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Gradient Descent for Training a Linear Neuron

Solution Using Gradient Descent

We minimize the SSE loss function in weight space:

E (~w) =
1

2

N∑
p=1

(dp − yp)2 =
1

2

N∑
p=1

(
dp −

n∑
i=0

wixpi

)2

=
N∑

p=1

Ep(~w)

Ep(~w) is the error function for a single sample

The loss function is quadratic,
convex, meaning gradient descent
should reliably find its global
minimum with appropriate
parameter tuning.

28 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Gradient Descent for Training a Linear Neuron

Gradient Computation:

Ep(~w) =
1

2
(dp − yp)2 =

1

2

(
dp − f (

n∑
i=0

wixpi )

)2

Compute the partial derivatives:

∂Ep

∂wi
=
∂Ep

∂yp

∂yp
∂wi

= −(dp − yp)xpi

Weight Update Rule:

wi (t + 1) = wi (t)− α∂Ep

∂wi
= wi (t) + α(dp − yp)xpi

Vectorized Form:

~w(t + 1) = ~w(t)− α∇Ep(~w) = ~w(t) + α(dp − yp)~xTp

29 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Training a Linear Neuron Using Gradient Descent

General Algorithm Scheme (GD, Gradient Descent)
1 Initialize weights with small random real values:

~w(0) = (w0,w1, ...,wn)T

Initialize the learning rate α0 with a small positive value:

1� α0 > 0

2 Present the next training sample (~xt , dt) and compute the
neuron’s actual output:

yt = ~xt ~w

3 Update the weights:

~w(t + 1) = ~w(t) + αt(dt − yt)~x
T
t

4 Optionally update the learning rate: αt → αt+1

5 If the stopping condition is not met, return to step 2.
30 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Training a Linear Neuron Using Gradient Descent

How to Present Training Samples? Different Strategies:
1 Iterative per epoch (Online GD):

Each sample is presented exactly once per epoch, with a
random order within each epoch.
The number of epochs determines how many times the entire
training set is presented.

2 Batch processing per epoch (Batch GD):

The entire training set is presented at once, and weights are
updated collectively:

~y = X ~w

~w(t + 1) = ~w(t) + αtX
T (~d − ~y)

3 Mini-batch processing (SGD, Stochastic Gradient
Descent):

The training set is randomly split into batches (mini-batches),
and weights are updated batch by batch.

31 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Training a Linear Neuron Using Gradient Descent

Comparison of Training Strategies
1 Online GD (per sample):

Fast training (in number of epochs) but unstable (reducing the
error for the current sample may increase the error for others).
Greater randomness, more sensitivity to outliers and
hyperparameter choices (e.g., learning rate).

2 Batch GD (per full dataset):

Stable learning process.
Efficient for small datasets but has high memory requirements
for large datasets.

3 Mini-batch SGD (hybrid approach):

Combines advantages of both methods.
Commonly used for deep learning and large-scale datasets.

32 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Training a Linear Neuron Using Gradient Descent

How to Initialize Weights?

Learning should start from a random point.

Weights should be initialized with small random values
(preferably centered around 0) instead of setting them to zero.

Large or biased initial weights may lead to poor learning
performance.

Constant vs. Adaptive Learning Rate

A constant learning rate may cause the algorithm to oscillate
at the end of training.

The algorithm is highly sensitive to the choice of learning rate.

How and When to Update the Learning Rate?

Typically updated once per epoch:

αe =
α0

e
, αe =

α0√
e

33 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Stopping Criteria for Training

When to Stop Training?
Several strategies can be applied:

1 A predefined number of epochs.
2 When the average error falls below a threshold:

E < Emin

3 When the validation error stops decreasing (early stopping).
4 When weight updates become too small:

|∆w | < δmin

Early Stopping – Preventing Overfitting
Uses an independent dataset – validation set.

It should be entirely separate from the training set.
It allows continuous monitoring of model generalization.

If validation error increases for several consecutive epochs,
training is stopped.

34 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Feature Normalization in Gradient-Based Learning

Why Normalize Input Features?

Large input values may cause instability during training
(affecting learning speed and generalization).

Normalization Methods:

Min-max normalization to the range [−1, 1]:

X new
ij = 2 ·

Xij −mj

Mj −mj
− 1

where mj = mink(Xkj), Mj = maxk(Xkj).
Standardization using mean and standard deviation:

X new
ij =

Xij − E (Xkj)

S(Xkj)

E (Xkj) = 1
N

∑N
k=1 Xkj is the mean of column j in matrix X .

S(Xkj) = 1
N−1

∑N
k=1(Xkj − E (Xkj))2 is the standard deviation

of column j .
35 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Evaluating Regression Performance of a Linear Neuron

Error Metrics:

SAE (Sum Absolute Error): E (~w) =
∑N

p=1 |dp − yp|

SSE (Sum Squared Error): E (~w) =
∑N

p=1(dp − yp)2

MAE (Mean Absolute Error) – readable for humans,
represents the average deviation from expected values:

E (~w) =
1

N

N∑
p=1

|dp − yp|

MSE (Mean Squared Error) – commonly used for comparison:

E (~w) =
1

N

N∑
p=1

(dp − yp)2

36 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Evaluating Regression Performance of a Linear Neuron

Assessing Whether the Model Has Learned the Regression
Task Well

Compute MSE (Mean Squared Error) and SSE (Sum of
Squared Errors) on the training set.
To evaluate the model’s generalization ability, compute MSE
and SSE on the test set as well.

The test set should be entirely independent of the training and
validation sets, containing completely unseen samples.

How to Create a Validation and Test Set?

For synthetic tasks, we can generate them randomly (e.g.,
from the same probability distribution, possibly adding
additional noise).

For real-world datasets, it is common practice to randomly
split the data into training, validation, and test subsets,
typically in a 70-15-15 ratio.

37 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Examples – Demonstration of Gradient Descent in
Python

linear neuron.ipynb
Gradient Descent on Examples 1 and 2 from the Slides

We will demonstrate the crucial role of hyperparameter
selection in gradient descent (learning rate, whether it is
adaptive, proper weight initialization).

Comparison of gradient descent with the LSQ method:

Observation: Gradient descent requires careful tuning of
hyperparameters and for small taksks it is more
computationally demanding.
However, for more complex tasks, gradient descent can yield
better results than LSQ.

We will illustrate how hyperparameters can be fine-tuned step
by step when solving a specific task.

38 / 41

https://github.com/reitezuz/18NES1-2025-/blob/main/week3/linear_neuron.ipynb


Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Examples – Linear Regression Task

Example 3 and Example 4 – Linear Regression in
One-Dimensional and Two-Dimensional Input Spaces

We will demonstrate the use of test and validation datasets
during training and in evaluating how well the linear neuron
has learned the task.

Again, we will experiment with hyperparameter settings and
attempt to fine-tune them for the given task.

We will compare iterative and batch gradient descent.

We will apply the early stopping technique.

39 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Example – Optional Homework for Bonus Points

Modify dataset 4 (define your own unique linear function with
unique noise).

Experiment with hyperparameter settings for this task
(learning rate, number of epochs, training strategies, etc.) and
optimize them.

Briefly evaluate your experiment results (which
hyperparameter settings would you recommend for this task
and why?).

Compare the best results achieved with the LSQ method.

Submit the final notebook (including textual evaluation) via
email.

40 / 41



Neural Networks 1 - Linear Neurons

Linear Neuron

Gradient Method

Gradient Descent – Summary

Gradient descent can solve the linear regression task as
effectively as the classical LSQ method, BUT it is more
challenging to apply:

It is a local optimization method – results may vary slightly
with each run.
The method is highly sensitive to proper hyperparameter
tuning.

The advantage over LSQ is that gradient descent can be
applied to a significantly broader range of problems where
classical LSQ fails.

41 / 41


	Review - Perceptron with a Step Activation Function and Its Learning Algorithms
	Linear Neuron
	Learning Using the LSQ Method
	Gradient Method


