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Neural Networks 1 - Artificial Neurons

Review

What We Covered Last Time

A n introduction to Single Neuron
models

1 From Biological to Artificial Neurons
2 The Earliest Artificial Neuron Models:

McCulloch-Pitts Neuron (1943)
Perceptron (Rosenblatt, 1955)

3 Perceptron and Logical Function
Representation

4 Perceptron Network — Logical
Threshold Circuit

5 Geometric Interpretation of the
Perceptron and Linear Separability
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Mathematical Model of a Neuron - Original Definition

w1

x2

xn

x1

wn

w2

inputs weights
ξ ... internal potential

y ... output 
(activity)

f ... activation 
function

y=f(ξ)

h ... threshold

ξ=∑xiwi - h

Classical Definition: Threshold h

Internal potential: ξ =
∑n

i=1 wixi − h = w⃗ x⃗T − h

Output: y = f (ξ) ... Step activation function:

f (ξ) =


1, if ξ > 0 (the neuron is active)

0.5 (or 0), if ξ = 0 (the neuron is passive)

0 (or -1), if ξ < 0 (the neuron is neutral)
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Geometric Interpretation of an Artificial Neuron

The neuron’s inputs can be represented as points in an
n-dimensional Euclidean space (input/feature space).

Setting the neuron’s internal potential to ξ = 0 results in the
equation of a decision hyperplane (decision boundary) .

ξ = w1x1+w2x2−h = 0

x2 = −w1

w2
x1+

h

w2
x1

x2

decision
hyperplane

w1x1 + w2x2 - h = 0

feature space
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Geometric Interpretation of an Artificial Neuron

The perceptron can be used as a linear classifier, separating
patterns into two classes (P and P).

why linear?: The boundary between the two classes is a
hyperplane: w1x1 + w2x2 + · · ·+ wnxn − h = 0
which represents a point, a line, or a plane depending on the
number of input dimensions.

Step Activation Function:

f (ξ) = 1 for ξ > 0 ... neuron is active
(class P)

f (ξ) = 0 (or −1) for ξ < 0 ... neuron
is passive (class P)

f (ξ) = 0.5 (or 0) for ξ = 0 ... neuron
is neutral, meaning it cannot decide.
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Mathematical Model of a Neuron — Modern Definition

w1

x2

xn

x1

wn

w2

inputs weights
ξ ... internal potential

y=f(ξ)

b ... bias

ξ=∑xiwi +b
y ... output 
(activity)

f ... activation 
function

Alternative Definition: Threshold h → Bias b

Internal potential:

ξ =
n∑

i=1

wixi + b = w⃗ · x⃗T + b

Output: y = f (ξ) (step activation function ... sign)
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Mathematical Model of a Neuron — Matrix Definition

w1

x2

xn

x1

x0=1

wn

w2

vsInputs weights

w0... fictional weight

x0... fictional input

y=f(ξ)
ξ=∑xiwi

w0=b=-h

f ... activation 
function

y ... output 
(activity)

ξ ... internal potential

Alternative Definition: Introducing a Fictional Bias Input

Extended feature space ... x⃗ = (x0 = 1, x1, ..., xn)

Extended weight vector ... w⃗ = (w0 = b = −h,w1, ...,wn)

Internal potential ... ξ =
∑n

i=0 wixi = w⃗ · x⃗T

Output: y = f (ξ) (step activation function ... sign)
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Perceptron (Rosenblatt, 1955) and Logical Function
Representation

We consider the following perceptron model:

x1

x1

x2

w2

wn

w1

y

w0

Binary Perceptron

Inputs: xi ∈ {0, 1}
Outputs: y ∈ {0, 0.5, 1}
y = f (ξ) = signum(ξ)

signum(ξ) =


1, if ξ > 0

0.5, if ξ = 0

0, if ξ < 0

ξ = w⃗ · x⃗T =
n∑

i=0

wixi

= w0 +
n∑

i=1

wixi

Bipolar Perceptron

Inputs: xi ∈ {−1,+1}
Outputs: y ∈ {−1, 0,+1}
y = f (ξ) = sign(ξ)

sign(ξ) =


1, if ξ > 0

0, if ξ = 0

−1, if ξ < 0 8 / 1
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Perceptron and Logical Function Representation

A perceptron can implement basic logical functions:

NOT (negation), ID (identity)
AND (conjunction), OR (disjunction)
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but it can not represent all logical functions, e.g., XOR (Exclusive
OR, A ⊗ B):
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... the problem of linear separability
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Review

Perceptron and Logical Function Representation

A perceptron can implement basic logical functions:

NOT (negation), ID (identity)

AND (conjunction), OR (disjunction)
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→ Using perceptrons, we can build a logical threshold circuit,
allowing the representation of any Boolean function.

AND represents the intersection of convex regions, while OR
represents their union.
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XOR - Solution to the Optional Homework

XOR - Solution to the Optional Homework

Example: Exclusive OR (XOR)

1 XOR can be represented using basic logical operations (AND,
OR, NOT) in different ways. Can you design multiple
representations?

2 Design the smallest possible neural network that can represent
XOR. How many neurons does it contain?

x1 x2 y = x1 ⊗ x2
-1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 -1
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XOR - Solution to the Optional Homework

XOR - Solution to the Optional Homework

Example: Exclusive OR (XOR)

1 XOR can be represented using basic logical operations (AND,
OR, NOT) in different ways. Can you design multiple
representations?

2 Design the smallest possible neural network that can represent
XOR. How many neurons does it contain?
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XOR - Solution to the Optional Homework

XOR - Solution to the Optional Homework

Example: Exclusive OR (XOR)

1st Solution: x1 ⊗ x2 = (x1 ∨ x2) ∧ ¬(x1 ∧ x2)

OR

-1

AND

AND
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y
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XOR - Solution to the Optional Homework

XOR - Solution to the Optional Homework

Example: Exclusive OR (XOR)

2nd Solution: x1 ⊗ x2 = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

OR
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AND

x1

x2
+1

+1

+1
+1

y

+1
-1
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-1
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XOR - Solution to the Optional Homework

XOR - Solution to the Optional Homework

Example: Exclusive OR (XOR)

3rd Solution:
x1 ⊗ x2 = (x1 ∨ x2) ∧ ¬(x1 ∧ x2) = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

OR

OR

AND

x1

x2
+1

+1

+1

+1

+1

y

+1
-1

-1 -1
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Perceptron and Its Learning Algorithm

Neural Networks 1 - Lecture 3: Artificial Neuron
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Perceptron and Its Learning Algorithm

Perceptron - Learning Algorithm

We already know:
A perceptron (with a step activation function) can be used as a
linear classifier to separate input patterns into two sets/classes (P
and P).
Separating Hyperplane
Defined by an (n+1)-dimensional weight vector w⃗ , it is the set of
all points x⃗ ∈ Rn for which w⃗ · x⃗ + w0 = 0.
Problem:
Find the appropriate weights and threshold/bias that allow for the
correct classification of input patterns into sets P and P using a
separating hyperplane.
Possible Solution:
The Perceptron (Rosenblatt’s) Learning Algorithm (Rosenblatt,
1959)
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Perceptron and Its Learning Algorithm

Perceptron - Learning Algorithm

Data for Training the Model:

Training (data)set T

A set of N training patterns T = {(x⃗1, d1), ..., (x⃗N , dN)}
Training pattern (x⃗ , d):

x⃗ = (x1, ..., xn) ... input pattern with n features
d ∈ {−1, 1} ... desired (expected) output

T can be divided into two sets P and P:

P ... positive patterns (d = 1)
P ... negative patterns (d = −1)
T = P ∪ P
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Perceptron and Its Learning Algorithm

Perceptron - Learning Algorithm

Data used for training the model:

Training set T = {(x⃗1, d1), ..., (x⃗N , dN)}:
Matrix representation T = (X |d⃗):
x11 x12 ... x1n d1 ... 1st training pattern
x21 x22 ... x2n d2 ... 2nd training pattern
... ... ... ...
xN1 xN2 ... xNn dN ... N-th training pattern

For the extended feature space:
x10 = 1 x11 ... x1n d1 ... 1st training pattern
x20 = 1 x21 ... x2n d2 ... 2nd training pattern

... ... ... ...
xN0 = 1 xN1 ... xNn dN ... N-th training pattern
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Perceptron and Its Learning Algorithm

Perceptron - Learning Algorithm

Learning Objective:
Set the weights (and bias) of the neuron so that it correctly
classifies all training patterns, i.e.:

yp = dp ... for all training patterns in T
yp ... actual response (output) of the neuron for the input
pattern x⃗p

Perceptron with a step activation function:

yp = sign(ξp)

ξp =
n∑

i=1

wixpi + w0 =
n∑

i=0

wixpi = w⃗ · x⃗p

x⃗p = (1, xp1, ..., xpn) ... extended input pattern

→ Our goal:

w⃗ · x⃗p < 0 ... for extended training patterns from P
w⃗ · x⃗p > 0 ... for extended training patterns from P
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Perceptron and Its Learning Algorithm

Perceptron - Learning Algorithm

Our Goal:

w⃗ · x⃗p < 0 ... for extended training patterns from P
w⃗ · x⃗p > 0 ... for extended training patterns from P

Possibilities:
1 The system of inequalities has no solution → we seek an

imperfect solution.
2 At least one perfect solution w⃗ exists in Rn+1 → an infinite

number of solutions exist in Rn+1 (even in Zn+1).

Possible Additional Conditions:

|w0|+ |w1|...+ |wn| = min√
w0

2 + · · ·wn
2 = min

max(|w0|, ..., |wn|) = min

x1

w

w.x = 0

-3 -2 -1 0 1 2 3

x2

-3

-2

-1

1

2

3
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Perceptron and Its Learning Algorithm

Perceptron - Learning Algorithm

Notation:

y = f (x⃗) ... actual response (output) of the neuron for the
input pattern x⃗ (where d is the desired response)

Target (Error) Function

Number of misclassified patterns: E =
∑

(x⃗ ,d)∈T [d ̸= f (x⃗)]
For a bipolar model:

E =
∑
x∈P

1

2
(1− f (x⃗)) +

∑
x∈P

1

2
(1 + f (x⃗))

For a binary model:

E =
∑
x∈P

(1− f (x⃗)) +
∑
x∈P

f (x⃗)

Learning Objective:

Minimize E in the weight space. Ideally, E = 0.
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm

Concept and Derivation:

We will work in the extended
feature and weight space.

Our goal:

w⃗ · x⃗ < 0 for (x⃗ , d) ∈ P

w⃗ · x⃗ > 0 for (x⃗ , d) ∈ P

From the definition of the dot
product:

w⃗ · x⃗ = |w⃗ ||x⃗ | cos(α)
→

w⃗ · x⃗ = 0 ... |α| = 90◦

w⃗ · x⃗ > 0 ... |α| < 90◦

w⃗ · x⃗ < 0 ... 180 ≥ |α| > 90◦

Geometric Interpretation:

x1

w

w.x = 0

x-3 -2 -1 0 1 2 3

y

-3

-2

-1

1

2

3

x2

w.x1 < 0

w.x2 >0

α
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm

Concept and Derivation:

w⃗0 ... initial (current) weight
vector

(x⃗1, d1 = 1) ∈ P ... training
pattern where the model
produces an incorrect
output:
w⃗0 · x⃗1 ≤ 0

What we do:

Adjust w⃗0 to decrease the
angle between w⃗0 and x⃗1
→ ideally |α| < 90

Geometric Interpretation:

x1

w0

w0.x = 0

x-3 -2 -1 0 1 2 3

y

-3

-2

-1

1

2

3
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm

Concept and Derivation:

w⃗0 ... initial (current) weight
vector

(x⃗1, d1 = 1) ∈ P ... training
pattern where the model
produces an incorrect
output:
w⃗0 · x⃗1 ≤ 0

What we do:

Adjust w⃗0 to decrease the
angle between w⃗0 and x⃗1
→ ideally |α| < 90
→ Add x⃗1 to w⃗0

w⃗1 = w⃗0 + x⃗1

Geometric Interpretation:

w1

x1

w0

w0.x = 0

x-3 -2 -1 0 1 2 3

y

-3

-2

-1

1

2

3
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm

Concept and Derivation:

w⃗1 ... current weight vector

Training pattern
(x⃗2, d2 = −1) ∈ P, for
which:
w⃗1 · x⃗2 ≥ 0

What we do:

Adjust w⃗1 to increase the
angle between w⃗1 and x⃗2
→ ideally |α| > 90
→ Subtract x⃗2 from w⃗1

w⃗2 = w⃗1 − x⃗2

Geometric Interpretation:

w1

x2

w0

w2

w0.x = 0

x-3 -2 -1 0 1 2 3

y

-3

-2

-1

1

2

3
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm (1959)

1 Initialize weights:
w⃗(0) = (w0,w1, ...,wn)

T ... weight vector at time 0 (including
threshold/bias) w0 = b = −h

2 Present the next training pattern (x⃗t , dt):
x⃗t = (xt0 = 1, xt1, ..., xtn) ... input pattern
dt ... desired output

3 Compute the actual output (network response):
yt = sign(x⃗tw⃗)

4 Update weights:

w⃗(t + 1) =


w⃗(t) if y(t) = d(t)
w⃗(t) + x⃗Tt if yt ̸= 1, dt = 1
w⃗(t)− x⃗Tt if yt ̸= −1, dt = −1

or equivalently: w⃗(t + 1) = w⃗(t) + x⃗Tt sign(dt − yt)
5 If t has not reached the maximum value, return to step 2.
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm (1959)

How to present training patterns? ... different strategies:
1 Iteratively: one by one

By epochs: during one epoch, each pattern is presented
exactly once
Number of epochs ... how many times the entire training set is
presented

2 Randomly ... in each iteration, a random training pattern is
selected

3 A suitable combination of previous strategies:
1 Shuffle patterns randomly within each epoch
2 Start with random presentation, then systematically go

through all patterns at the end of training
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm (1959)

How to initialize weights? ... different strategies:

w⃗(0) = 0⃗

Randomly: small random values

Use a heuristic: e.g., the average of patterns from P minus
the average of patterns from P

...

When to stop training?

1 Predefined number of iterations or epochs

2 When E = 0, or when the error is sufficiently small ...
E < Emin
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm (1959)

Example 1

x0 x1 x2 d

a +1 -1 -1 +1
b +1 -1 +1 +1
c +1 +1 -1 +1
d +1 +1 +1 -1

w⃗(0) = 0⃗

Patterns are presented iteratively (randomly within each
epoch)
c, b, d, a; b, a, c, d; ...

30 / 1



Neural Networks 1 - Artificial Neurons

Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm (1959)

Example 1

x0 x1 x2 d

a +1 -1 -1 +1
b +1 -1 +1 +1
c +1 +1 -1 +1
d +1 +1 +1 -1

Solution c, b, d, a; b, a, c, d; ...

w0 w1 w2 d ξ y operation

w⃗(0) 0 0 0
c +1 +1 -1 +1 0 0 +

w⃗(1) +1 +1 -1
b +1 -1 +1 +1 -1 -1 +

w⃗(2) +2 0 0
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm (1959)

Example 1

x0 x1 x2 d

a +1 -1 -1 +1
b +1 -1 +1 +1
c +1 +1 -1 +1
d +1 +1 +1 -1

Solution c, b, d, a; b, a, c, d; ...

w0 w1 w2 d ξ y operation

w⃗(2) +2 0 0
d +1 +1 +1 -1 +2 +1 -

w⃗(3) +1 -1 -1
a +1 -1 -1 +1 +3 +1 none
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm (1959)

Example 1

x0 x1 x2 d

a +1 -1 -1 +1
b +1 -1 +1 +1
c +1 +1 -1 +1
d +1 +1 +1 -1

Solution c, b, d, a; b, a, c, d; ...

w0 w1 w2 d ξ y operation

w⃗(4) +1 -1 -1
b +1 -1 +1 +1 +1 +1 none
a +1 -1 -1 +1 +3 +1 none
c +1 +1 -1 +1 +1 +1 none
d +1 +1 +1 -1 -1 -1 none, end

→ w⃗ = (+1,−1,−1)T
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm (1959)

What if input patterns have different magnitudes?

Or what if one or several patterns are outliers?
→ This may significantly slow down training

Solution: normalize input vectors to the same magnitude:

x⃗new =
x⃗

|x⃗ |
=

x⃗√
x20 + x21 + ...+ x2n

→ Normalized Rosenblatt learning algorithm
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Learning Algorithm (1959)

Advantages

Simple algorithm

For linearly separable sets, the algorithm converges, i.e., it
finds the correct solution in a finite number of steps
(Rosenblatt, 1959)

Disadvantages
Very slow algorithm

The actual number of steps grows exponentially with the
number of inputs
Sensitive to outliers (if no normalization is applied)

Can only classify linearly separable sets

It cannot be extended to work for neural networks with
multiple layers

Poor sgeneralization ... may not find the ”optimal”decision
hyperplane
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Perceptron and Its Learning Algorithm

Perceptron - Other Learning Algorithms

Other Variants of the Perceptron Learning Algorithm
1 Rosenblatt’s Batch Learning Algorithm

The entire training set is presented at once:

w⃗(t + 1) = w⃗(t) +
N∑

p=1

x⃗Tp sign(dp − yp)

2 Rosenblatt’s Algorithm with a Learning Parameter
When adding/subtracting patterns, we use a weighting factor
α: w⃗(t + 1) = w⃗(t) + αx⃗Tt sign(dt − yt)

3 Pocket Algorithm
Is able to find an optimal solution even for non-linearly
separable sets

Hebbian Learning

Each training pattern is presented exactly once:

w⃗(t + 1) = w⃗(t) + dt x⃗
T
t
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Batch Learning Algorithm

The entire training set is presented at once:

w⃗(t + 1) = w⃗(t) +
N∑

p=1

x⃗Tp sign(dp − yp)

For matrix representation:
w(t) = (w0,w1, ...,wn)

T

T = (X , d⃗)
x10 = 1 x11 ... x1n d1

... ... ... ...
xN0 = 1 xN1 ... xNn dN

w⃗(t + 1) = w⃗(t) + XT sign(d⃗ − y⃗)
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Batch Learning Algorithm

1 Initialize weights:
w⃗(0) = (w0,w1, ...,wn)

T ... weight vector at time (epoch) 0
2 Present the entire training set (X , d⃗)

x10 = 1 x11 ... x1n d1
... ... ...

xN0 = 1 xN1 ... xNn dN
3 Compute the actual output (network response) y⃗ :

y⃗ = sign(Xw⃗)

4 Update weights:

w⃗(t + 1) = w⃗(t) + XT sign(d⃗ − y⃗)

5 If the number of epochs has not reached the maximum, return
to step 2.
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Batch Learning Algorithm

Advantages and Disadvantages

Matrix representation, possibility of parallel computation

Often faster and more stable convergence than Rosenblatt’s
algorithm (but not always)

Learning outcome does not depend on how we order the
patterns

Higher memory requirements

No known proof of convergence, even for linearly separable
sets

For non-linearly separable sets, just like the original algorithm,
the algorithm may oscillate indefinitely
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Perceptron and Its Learning Algorithm

Bipolar Perceptron - Hebbian Learning (1949)

Each training pattern is presented exactly once:
1 Initialize weights:

w⃗(0) = 0⃗T

2 For each training pattern x⃗t (t = 1, · · · ,N), update the
weights:

w⃗(t + 1) = w⃗(t) + dt x⃗
T
t

In matrix form:
w⃗ = XT d⃗

Advantages and Disadvantages

Simpler than Rosenblatt’s algorithm

No need to compute the actual output during training

Learning outcome does not depend on the order of patterns

Weights can be easily interpreted

Does not guarantee finding a perfect solution
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Perceptron and Its Learning Algorithm

Bipolar Perceptron - Hebbian Learning (1949)

Example 1

x0 x1 x2 d

a +1 -1 -1 +1
b +1 -1 +1 +1
c +1 +1 -1 +1
d +1 +1 +1 -1
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Perceptron and Its Learning Algorithm

Bipolar Perceptron - Hebbian Learning (1949)

Example 1

x0 x1 x2 d

a +1 -1 -1 +1
b +1 -1 +1 +1
c +1 +1 -1 +1
d +1 +1 +1 -1

Solution:

w0 w1 w2

w⃗(0) 0 0 0
dax⃗a +1 -1 -1

w⃗(1) +1 -1 -1
dbx⃗b +1 -1 +1
w⃗(2) +2 -2 0
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Perceptron and Its Learning Algorithm

Bipolar Perceptron - Hebbian Learning (1949)

Example 1

x0 x1 x2 d

a +1 -1 -1 +1
b +1 -1 +1 +1
c +1 +1 -1 +1
d +1 +1 +1 -1

Solution:

w0 w1 w2

w⃗(2) +2 -2 0
dc x⃗c +1 +1 -1

w⃗(3) +3 -1 -1
dd x⃗d -1 -1 -1
w⃗(4) +2 -2 -2

→ w⃗ = (+2,−2,−2)T

43 / 1



Neural Networks 1 - Artificial Neurons

Perceptron and Its Learning Algorithm

Bipolar Perceptron - Hebbian Learning (1949)

Example 1

x0 x1 x2 d

a +1 -1 -1 +1
b +1 -1 +1 +1
c +1 +1 -1 +1
d +1 +1 +1 -1

Solution in Matrix Form: w⃗ = XT d⃗

→ w⃗ = (+2,−2,−2)T ... Did the perceptron learn correctly?
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Perceptron and Its Learning Algorithm

Bipolar Perceptron - Hebbian Learning (1949)

Example 1
Solution: w⃗ = (+2,−2,−2)T ... Did the perceptron learn
correctly?

x0 x1 x2 d ξ y

a +1 -1 -1 +1 +6 +1 ok
b +1 -1 +1 +1 +2 +1 ok
c +1 +1 -1 +1 +2 +1 ok
d +1 +1 +1 -1 -2 -1 ok

→ Yes (but this is not always the case)
Note

The first step of the batch learning algorithm would be the
same for w⃗0 = 0⃗

Hebbian learning can be used to initialize weights for
Rosenblatt’s algorithm
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Algorithm with a Learning
Parameter

1 Initialize weights and bias with small random values:
w⃗(0) = (w0,w1, ...,wn) ... weight vector at time 0 (including
threshold/bias) w0 = b = −h

2 Present the next training pattern (x⃗t , dt):
x⃗t = (xt0 = 1, xt1, ..., xtn) ... input pattern
dt ... desired output

3 Compute the actual output (network response):
yt = sign(w⃗ · x⃗t)

4 Update weights:

w⃗(t + 1) =


w⃗(t) if y(t) = d(t)
w⃗(t) + αx⃗Tt if yt ̸= 1, dt = 1
w⃗(t)− αx⃗Tt if yt ̸= −1, dt = −1

or equivalently: w⃗(t + 1) = w⃗(t) + αx⃗Tt sign(dt − yt)
α ... learning parameter

5 If t has not reached the maximum value, go back to step 2.
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Perceptron and Its Learning Algorithm

Perceptron - Rosenblatt’s Algorithm with a Learning
Parameter

How does the choice of the learning parameter affect the
result?

Significant acceleration of training
Recommendation: α ∈ (0, 1]
Best practice: initially, α is large and gradually decreases
towards 0, α → 0

Advantages and Disadvantages

Usually faster than Rosenblatt’s original algorithm
For linearly separable sets, the algorithm converges, i.e., it
finds the correct solution in a finite number of steps
(Rosenblatt, 1959)
The actual number of steps grows exponentially with the
number of inputs
A major issue arises if the pattern sets are not linearly
separable → the algorithm diverges
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Perceptron and Its Learning Algorithm

Perceptron - Pocket Algorithm (Gallant, 1990)

Idea

Uses the (iterative) Rosenblatt learning algorithm

The best weight vector found so far is stored in a ”pocket”

If a better weight vector (i.e., one with a smaller error) is
found, it is saved in the pocket

Advantages

Even for non-linearly separable sets, the algorithm finds the
best possible solution.

If the training set is finite and the components of the weight
vector and input vectors are rational, it can be shown that the
pocket algorithm converges to the optimal solution with
probability 1 (Gallant, 1990).
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Neural Networks 1 - Lecture 3: Artificial Neuron
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Examples

Examples - 1. Demonstrations of Learning Algorithms in
Python

rosenblatt perceptron.ipynb

Rosenblatt’s learning algorithm - selected variants (iterative,
batch, with learning parameter), Hebbian learning

Visualization of data and decision boundary

Examples: learning of simple logical functions:

Negated AND

x1 x2 d

-1 -1 +1
-1 +1 +1
+1 -1 +1
+1 +1 -1

Demonstration: How the perceptron learns using different
algorithm variants and how the decision boundary shifts over time.
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Examples

Examples - 1. Demonstrations of Learning Algorithms in
Python

rosenblatt perceptron.ipynb

Rosenblatt’s learning algorithm - selected variants (iterative,
batch, with learning parameter), Hebbian learning

Visualization of data and decision boundary

Examples: learning of simple logical functions:

XOR (Exclusive OR)

x1 x2 d = x1 ⊗ x2
-1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 -1

Demonstration: How perceptron learning behaves when the data
is not linearly separable.
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Examples

Examples - 2. Various Practical Tasks

perceptron examples.ipynb

Learning simple logical functions

Data with outliers

Randomly generated data

Letters

Handwritten digits
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Examples

Learning Simple Logical Functions

Example 1 – Gallbladder Attack

Salad Pork belly Medication Will I feel sick?

+1 -1 -1 +1
+1 -1 +1 -1
+1 +1 -1 +1
-1 +1 +1 -1
+1 +1 -1 +1
+1 +1 +1 +1

How long will the perceptron take to learn? Will it be able to
perfectly represent the given logical function?

Are there any differences between learning algorithms?
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Examples

Learning Simple Logical Functions

Example 2 - The Pub (variation on a majority circuit)

Pavel Pepa Honza Are we going for a beer?

+1 -1 -1 -1
+1 -1 +1 +1
-1 +1 -1 -1
-1 +1 +1 +1
+1 +1 -1 +1
+1 +1 +1 +1
-1 -1 -1 -1
-1 -1 +1 -1

How long will the perceptron take to learn? Will it be able to
perfectly represent the given logical function?

Are there any differences between learning algorithms?

54 / 1



Neural Networks 1 - Artificial Neurons

Examples

Examples - Various Practical Tasks

Comparison of Different Machine Learning Models,
Specifically Variants of Rosenblatt’s Learning Algorithm

Typically, we are interested in error (how well the model
learned the task) and efficiency (number of epochs / training
time)

Since Rosenblatt’s algorithm is partially stochastic, the
learning process and outcome can vary each time

Therefore, it is better to repeat the experiment multiple times
(e.g., 100 times) and compare average values (as well as
variance)

For different tasks, a different model/algorithm variant may be the
best.
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Examples

Examples - Various Practical Tasks

Example 3 - Data with Outliers

We have data where input vectors have different magnitudes
(here, the 3rd sample is an outlier)

x1 x2 y

−0.5 −0.5 1
0.3 −0.5 1
−40 50 -1
−0.5 0.5 -1
−0.1 1.0 1

How long will the perceptron take to learn? Will it learn the
given task?

How long will it take if we normalize all input vectors to
length 1?
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Examples

Examples - Various Practical Tasks

Example 4 - Randomly Generated Data

When comparing different models or algorithms, it is useful to
start with artificially, e.g., randomly, generated data

In this case, the data is not perfectly linearly separable
(random noise is added)

Generate data multiple times and observe how perceptrons
learn. Which variant of Rosenblatt’s algorithm is best for this
task?

Example 5 - Randomly Generated Clusters

Next, we generate data containing two clusters of patterns

Generate data multiple times and observe how perceptrons
learn. Which variant of Rosenblatt’s algorithm is best for this
task?
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Examples

Examples - Various Practical Tasks

Example 5 - Letters letters example.ipynb

We use the prepared dataset letters.csv

Letters were segmented from letters.png

Explore the dataset and visualize some letters

Create a test set: data with added noise or subsequently
smoothed

Train the perceptron using different algorithms (and variants)
to recognize individual letters

Measure classification error on the training and test sets (also
track number of epochs / training time)

How much noise in the data can the perceptron handle?

Identify which letters the perceptron struggled with the most

Which learning algorithm performed the best?
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Examples

Examples - Various Practical Tasks

Example 6 - Handwritten Digits

We use the prepared dataset OcrData.csv containing
handwritten digits.

Explore the dataset and visualize some digits (use the
provided script).

Train a perceptron using different learning algorithms (and
their variants) to recognize individual digits.

Determine (and compare) the classification error on the
training set (and optionally, the number of epochs/training
time).

Identify which digits the perceptron struggled with the most.

Which learning algorithm performed the best?
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