
Neural Networks 1 - Artificial Neurons

Review

Neural Networks 1 - Artificial Neurons
18NES1 - Lecture 2, Summer semester 2024/25

Zuzana Peťŕıčková

February 24, 2025

1 / 62



Neural Networks 1 - Artificial Neurons

Review

What We Covered Last Time

Introduction to
Artificial Intelligence
and Machine Learning

Fundamental
Concepts of Machine
Learning

Brief History of
Artificial Neural
Networks

2 / 62



Neural Networks 1 - Artificial Neurons

Review

Review — Machine Learning

Core Principle:

The system ”builds itself,” meaning it learns from data
(training dataset) or previous experiences.

Learning Paradigms:
Supervised Learning

Training dataset in the form of [input, expected output]
Unsupervised Learning (Self-Organization)

Training dataset in the form of [input]
Reinforcement Learning

The program learns an optimal strategy based on previous
experiences.

Source: https://www.mathworks.com/discovery/reinforcement-learning.html
3 / 62



Neural Networks 1 - Artificial Neurons

Review

Review — Machine Learning

Supervised Learning - Task Types

Classification: Predicting a discrete class (category)

Regression: Predicting a numerical value (e.g., price,
temperature, handwriting slant, etc.)

Structured Data Learning (e.g., natural language sentences,
molecular structures, etc.)

4 / 62



Neural Networks 1 - Artificial Neurons

Review

Review — Machine Learning

Typical Machine Learning Workflow

Data Preprocessing
Transforming raw data into a format suitable for machine
learning models.
Example: Feature selection.

Model Selection and Development
Choosing the right type of model (depends on the problem).
Selecting a specific model within the chosen type (optimizing
parameters).

Model Evaluation — Best performed on unseen (test) data.

5 / 62



Neural Networks 1 - Artificial Neurons

Review

Review — Brief History of Artificial Neural Networks

Development Progressed in Waves:

The field experienced cycles of rapid progress and high
expectations, followed by periods of disappointment and
stagnation.

Key Milestones:

1940 – 1960: Theoretical foundations.

1960 – 1970: First boom — the ”single neuron era.”

1970 – 1980: First ”AI Winter” for neural networks.

1980 – 1990: Second boom — the era of ”shallow” neural
networks.

1990 – 2000: Gradual stabilization of the field.

2000 – 2010: Second ”AI Winter” for neural networks.

2010 – Present: Third boom — the era of ”deep” neural
networks.

6 / 62



Neural Networks 1 - Artificial Neurons

Review

Today’s Lecture: A Single Neuron

Today:

1 From Biological to Artificial Neurons
2 The Earliest Artificial Neuron Models:

McCulloch-Pitts Neuron (1943)
Perceptron (Rosenblatt, 1955)

3 Perceptron and Logical Function Representation

4 Perceptron Network — Logical Threshold Circuit

5 Geometric Interpretation of the Perceptron and Linear
Separability

Next Week:

1 Perceptron Learning Algorithms

7 / 62



Neural Networks 1 - Artificial Neurons

From Biological to Artificial Neurons

Biological Neuron Model

Biological Neuron

Fundamental building block of biological neural networks.
The output depends on inputs received by the neuron and
how they are processed within the neuron’s body.

8 / 62



Neural Networks 1 - Artificial Neurons

From Biological to Artificial Neurons

Biological Neural Network

Neurons are interconnected
to form networks.

Axons connect to
dendrites of other
neurons via synapses.
New synapses are
formed throughout life
→ this is essential for
learning and memory.

9 / 62



Neural Networks 1 - Artificial Neurons

From Biological to Artificial Neurons

Memory Mechanisms

Short-Term Memory Mechanism
Based on cyclic circulation of neural signals within neural
networks.
Information retention lasts approximately 30 seconds.

Medium-Term Memory Mechanism
Based on synaptic modifications and changes in neuron
weights.
The hippocampus plays a crucial role.
Information retention ranges from hours to days.

Long-Term Memory Mechanism
Long-term synaptic modifications rely on proteins in neuronal
nuclei.
Information can be retained for a lifetime.

10 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

From Biological to Artificial Neurons

w1

x2

xn

x1

wn

w2

inputs weights

y ...output (activity)

1 ... neuron is active
0 ... neuron is passive

y=1/0

h ... threshold

ξ = w1x1+w2x2+...+wnxn

ξ >= h 

 internal potential

??

Neuron Model:

Inputs: x1, x2, ..., xn (binary values: 0 or 1).
Input weights: w1,w2, ...,wn.
Threshold: h.
Internal potential: weighted sum of inputs

ξ = w1x1 + w2x2 + · · ·+ wnxn

Output: 1 or 0 (depending on whether the internal potential
exceeds the threshold or not).

11 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Mathematical Model of a Neuron — Formal Definition

w1

x2

xn

x1

wn

w2

inputs weights
ξ ... internal potential

y ... output 
(activity)

f ... activation 
function

y=f(ξ)

h ... threshold

ξ=∑xiwi - h

Neuron Parameters:
Weight vector: w⃗ = (w1, ...,wn) ∈ Rn.
Threshold (bias): h ∈ R.
Activation function: f : R → R.

Given an input x⃗ ∈ Rn, the neuron computes an output y ∈ R
as:

y = fw⃗ ,h(x⃗)

12 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Mathematical Model of a Neuron — Formal Definition

w1

x2

xn

x1

wn

w2

inputs weights
ξ ... internal potential

y ... output 
(activity)

f ... activation 
function

y=f(ξ)

h ... threshold

ξ=∑xiwi - h

Neuron Output Calculation:

Internal potential:

ξ =
n∑

i=1

wixi − h = w⃗ · x⃗T − h

Output:
y = f (ξ)

13 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Mathematical Model of a Neuron — Formal Definition

The terminology used originates from early neuron models:

Perceptron (Rosenblatt, 1955).
McCulloch-Pitts Neuron (1943).

Both models utilized a step activation function.

Step Activation Function:

If
∑n

i=1 wixi ≥ h, i.e.,
ξ =

∑n
i=1 wixi − h ≥ 0

then the neuron is active (f (ξ) = 1).

If
∑n

i=1 wixi < h, i.e.,
ξ =

∑n
i=1 wixi − h < 0

then the neuron is passive (f (ξ) = 0).

ξ

y

14 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Mathematical Model of a Neuron

Geometric Interpretation of an Artificial Neuron

The neuron’s inputs can be represented as points in an
n-dimensional Euclidean space (input/feature space).
Setting the neuron’s internal potential to ξ = 0 results in the
equation of a decision hyperplane (decision boundary) .

ξ = w1x1+w2x2−h = 0

x2 = −w1

w2
x1+

h

w2
x1

x2

decision
hyperplane

w1x1 + w2x2 - h = 0

feature space

15 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Perceptron (Rosenblatt, 1955) and McCulloch-Pitts
Neuron (1943)

The perceptron can be used as a linear classifier, separating
patterns into two classes (P and P).

why linear?: The boundary between the two classes is a
hyperplane: w1x1 + w2x2 + · · ·+ wnxn − h = 0
which represents a point, a line, or a plane depending on the
number of input dimensions.

Step Activation Function:

If
∑n

i=1 wixi ≥ h, i.e., ξ ≥ 0, f (ξ) = 1
... the neuron is active (class P).

If
∑n

i=1 wixi < h, i.e., ξ < 0, f (ξ) = 0
... the neuron is passive (class P).

x2

w1x1+w2x2 -h = 0

x1-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

16 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

McCulloch-Pitts Neurons (1943)

Binary Variant:

Binary inputs: xi ∈ {0, 1}
Binary outputs: y ∈ {0, 1}
Weights: wi ∈ {−1, 1}
Step activation function

w1

x2

xn

x1

wn

w2

inputs weights
ξ ... internal potential

y ... output 
(activity)

f ... activation 
function

y=f(ξ)

h ... threshold

ξ=∑xiwi - h

Bipolar Variant:

Bipolar inputs: xi ∈ {−1, 1}
Bipolar outputs: y ∈ {−1, 1}
Weights: wi ∈ {−1, 1}
Step activation function

Application: Representation of logical functions (AND, OR, NOT,
etc.) → We will explore this in a moment.
Major drawback:

The model had no learning algorithm. (Later solved using
Hebbian learning.)

17 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Perceptron (Rosenblatt, 1955)

Real-valued inputs: xi ∈ R
Real-valued weights and thresholds: wi ∈ R
Outputs:

Binary variant: y ∈ {0, 1}
Bipolar variant: y ∈ {−1, 1}

Step Activation Function Variants for Binary Perceptron:

f (ξ) =

{
1, if ξ ≥ 0 (active neuron)

0, if ξ < 0 (passive neuron)

f (ξ) =


1, if ξ > 0 (active neuron)

0.5, if ξ = 0 (neutral neuron)

0, if ξ < 0 (passive neuron)

→ Also known as the signum function
(signum).

ξ

y

ξ

y

18 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Perceptron (Rosenblatt, 1955)

Real-valued inputs: xi ∈ R
Real-valued weights and thresholds: wi ∈ R
Outputs:

Binary variant: y ∈ {0, 1}
Bipolar variant: y ∈ {−1, 1}

Step Activation Function Variants for Bipolar Perceptron:

f (ξ) =

{
1, if ξ ≥ 0 (active neuron)

−1, if ξ < 0 (passive neuron)

f (ξ) =


1, if ξ > 0 (active neuron)

0, if ξ = 0 (neutral neuron)

−1, if ξ < 0 (passive neuron)

→ Also known as the sign function (sign).

ξ

y

ξ

y

19 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Mathematical Model of a Neuron — Original Definition

w1

x2

xn

x1

wn

w2

inputs weights
ξ ... internal potential

y ... output 
(activity)

f ... activation 
function

y=f(ξ)

h ... threshold

ξ=∑xiwi - h

Classical Definition: Threshold h

Internal potential:

ξ =
n∑

i=1

wixi − h = w⃗ · x⃗T − h

Output: y = f (ξ)

20 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Mathematical Model of a Neuron — Modern Definition

w1

x2

xn

x1

wn

w2

inputs weights
ξ ... internal potential

y=f(ξ)

b ... bias

ξ=∑xiwi +b
y ... output 
(activity)

f ... activation 
function

Alternative Definition: Threshold h → Bias b

Internal potential:

ξ =
n∑

i=1

wixi + b = w⃗ · x⃗T + b

Output: y = f (ξ)

21 / 62



Neural Networks 1 - Artificial Neurons

Mathematical Model of a Neuron

Mathematical Model of a Neuron — Matrix Definition

w1

x2

xn

x1

x0=1

wn

w2

vsInputs weights

w0... fictional weight

x0... fictional input

y=f(ξ)
ξ=∑xiwi

w0=b=-h

f ... activation 
function

y ... output 
(activity)

ξ ... internal potential

Alternative Definition: Introducing a Fictional Bias Input

Extended feature space ... x⃗ = (x0 = 1, x1, ..., xn)

Extended weight vector ... w⃗ = (w0 = b = −h,w1, ...,wn)

Internal potential ... ξ =
∑n

i=0 wixi = w⃗ · x⃗T

Output: y = f (ξ)

22 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Neural Networks 1 — Lecture 2: Artificial Neuron

1 Review

2 From Biological to Artificial Neurons

3 Mathematical Model of a Neuron

4 Perceptron and Logical Function Representation

5 Neural Network

6 Logical Threshold Circuit

7 Linear Separability

23 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Perceptron and Logical Function Representation

A perceptron can implement basic logical functions:

NOT (negation)

ID (identity)

AND (conjunction)

OR (disjunction)

→ Using perceptrons, we can build a logical threshold circuit,
allowing the representation of any Boolean function.

24 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Perceptron and Logical Function Representation

We consider the following perceptron model:

x1

x1

x2

w2

wn

w1

y

w0

Binary Perceptron

Inputs: xi ∈ {0, 1}
Outputs: y ∈ {0, 0.5, 1}
y = f (ξ) = signum(ξ)

signum(ξ) =


1, if ξ > 0

0.5, if ξ = 0

0, if ξ < 0

ξ = w⃗ · x⃗T =
n∑

i=0

wixi

= w0 +
n∑

i=1

wixi

Bipolar Perceptron

Inputs: xi ∈ {−1,+1}
Outputs: y ∈ {−1, 0,+1}
y = f (ξ) = sign(ξ)

sign(ξ) =


1, if ξ > 0

0, if ξ = 0

−1, if ξ < 0

25 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — NOT (Negation)

Bipolar Model

x y = ¬x
-1 1
1 -1

Binary Model

x y = ¬x
0 1
1 0

x
w1

y

w0

y = sign(w0 + w1x)

How should we choose w0 and w1

for the bipolar model?

And for the binary model?

26 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — NOT (Negation)

Bipolar Model

x y = ¬x
-1 1
1 -1

Binary Model

x y = ¬x
0 1
1 0

x
-1

y

0

y = sign(w0 + w1x) = sign(−x)

x
-1

y

0.5

y = signum(w0+w1x) = signum(0.5−x)

Question: Can you think of alternative solutions?

27 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — NOT (Negation)

Example: Happiness = ¬ Misfortune

misfortune -1
happiness

0

28 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — ID (Identity)

Bipolar Model

x y = x

-1 -1
1 1

Binary Model

x y = x

0 0
1 1

x
w1

y

w0

y = sign(w0 + w1x)

How do we choose w0 and w1 for
the bipolar model?

And for the binary model?

29 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — ID (Identity)

Bipolar Model

x y = x

-1 -1
1 1

Binary Model

x y = x

0 0
1 1

x
1

y

0

y = sign(w0 + w1x) = sign(x)

x
1

y

-0.5

y = signum(w0+w1x) = signum(−0.5+x)

→ Nothing to solve here.

30 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — AND (Conjunction)

Bipolar Model

x1 x2 y = x1 ∧ x2
-1 -1 -1
-1 +1 -1
+1 -1 -1
+1 +1 +1

Binary Model

x1 x2 y = x1 ∧ x2
0 0 0
0 1 0
1 0 0
1 1 1

x1

x2

w1

w2

y

w0

y = sign(w0 + w1x1 + w2x2)

How do we choose w0, w1, and w2

for the bipolar model?

And for the binary model?

31 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — AND (Conjunction)

Bipolar Model

x1 x2 y = x1 ∧ x2
-1 -1 -1
-1 +1 -1
+1 -1 -1
+1 +1 +1

Binary Model

x1 x2 y = x1 ∧ x2
0 0 0
0 1 0
1 0 0
1 1 1

x1

x2

+1

+1
y

-1

y = sign(w0 + w1x1 + w2x2)

= sign(−1 + x1 + x2)

x1

x2

+1

+1
y

-1.5

y = signum(w0 + w1x1 + w2x2)

= signum(−1.5 + x1 + x2)
Question: Could there be other solutions?

32 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — AND (Conjunction)

Example: Rainbow = Sun ∧
Rain

sun

rain

+1

+1
rainbow

-1
(Bipolar Model)

33 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — AND (Conjunction)

How do we set the weights in the general case?

y = x1 ∧ x2 ∧ · · · ∧ xn

x1

x1

x2

w2

wn

w1

y

w0

y = sign

(
w0 +

n∑
i=1

wixi

)

34 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — AND (Conjunction)

y = x1 ∧ x2 ∧ · · · ∧ xn

Bipolar Model

x1

x1

x2

+1

+1

+1

y

1-n

y = sign

(
w0 +

n∑
i=1

wixi

)

= sign

(
1− n +

n∑
i=1

xi

)

Binary Model

x1

x1

x2

+1

+1

+1

y

0.5-n

y = signum

(
w0 +

n∑
i=1

wixi

)

= signum

(
0.5− n +

n∑
i=1

xi

)
35 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — OR (Disjunction)

Bipolar Model

x1 x2 y = x1 ∨ x2
-1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 +1

Binary Model

x1 x2 y = x1 ∨ x2
0 0 0
0 1 1
1 0 1
1 1 1

x1

x2

w1

w2

y

w0

y = sign(w0 + w1x1 + w2x2)

How do we choose w0, w1, and w2

for the bipolar model?

And for the binary model?

36 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — OR (Disjunction)

Bipolar Model

x1 x2 y = x1 ∨ x2
-1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 +1

Binary Model

x1 x2 y = x1 ∨ x2
0 0 0
0 1 1
1 0 1
1 1 1

x1

x2

+1

+1
y

+1

y = sign(w0 + w1x1 + w2x2)

= sign(1 + x1 + x2)

x1

x2

+1

+1
y

-0.5

y = signum(w0 + w1x1 + w2x2)

= signum(−0.5 + x1 + x2)

37 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — OR (Disjunction)

Example: success = luck ∨
preparation

luck

preparation

+1

+1
success

+1

(Bipolar Model)

38 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — OR (Disjunction)

How do we set the weights in the general case?
y = x1 ∨ x2 ∨ · · · ∨ xn

x1

x1

x2

w2

wn

w1

y

w0

y = sign(w0 +
∑n

i=1 wixi )

39 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — OR (Disjunction)

y = x1 ∨ x2 ∨ · · · ∨ xn

Bipolar Model

x1

x1

x2

+1

+1

+1

y

n-1

y = sign(w0 +
n∑

i=1

wixi )

= sign(n − 1 +
n∑

i=1

xi )

Binary Model

x1

x1

x2

+1

+1

+1

y

-0.5

y = signum(w0 +
n∑

i=1

wixi )

= signum(−0.5 +
n∑

i=1

xi )

40 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — Exclusive OR (XOR)

Bipolar Model

x1 x2 y = x1 ⊕ x2
-1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 -1

Binary Model

x1 x2 y = x1 ⊕ x2
0 0 0
0 1 1
1 0 1
1 1 0

Example:
peaceful home = cat ⊕ rabbit

x1

x2

w1

w2

y

w0

y = sign(w0 + w1x1 + w2x2)

How do we choose w0, w1,
and w2 for the bipolar
model?

And for the binary model?

41 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — Exclusive OR (XOR)

Bipolar Model

x1 x2 y = x1 ⊕ x2
-1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 -1

sign(w0 − w1 − w2) = −1

sign(w0 − w1 + w2) = +1

sign(w0 + w1 − w2) = +1

sign(w0 + w1 + w2) = −1

1...w0 − w1 − w2 < 0

2...w0 − w1 + w2 > 0

3...w0 + w1 − w2 > 0

4...w0 + w1 + w2 < 0

Adding 1st and 4th rows, and
2nd and 3rd rows:

2w0 < 0

2w0 > 0

→ Contradiction

Conclusion: A single perceptron cannot represent the XOR
function.

42 / 62



Neural Networks 1 - Artificial Neurons

Perceptron and Logical Function Representation

Logical Functions — Exclusive OR (XOR)

XOR cannot be implemented using a single perceptron:

x1

-1

-1

+1

+1

0 1

1

-1

-1

x2

A perceptron cannot implement all logical functions:

However, by combining perceptrons for NOT, ID, AND, and
OR in a structured way (into a neural network, specifically a
logical threshold circuit), we can construct more complex
logical functions.

43 / 62



Neural Networks 1 - Artificial Neurons

Neural Network

Neural Networks 1 - Lecture 3: Artificial Neuron

1 Review

2 From Biological to Artificial Neurons

3 Mathematical Model of a Neuron

4 Perceptron and Logical Function Representation

5 Neural Network

6 Logical Threshold Circuit

7 Linear Separability

44 / 62



Neural Networks 1 - Artificial Neurons

Neural Network

Neural Network

A neural network consists of neurons that are interconnected
by edges.

The output of one neuron can serve as an input to one or
more other neurons.

Neural Network Architecture (Topology)

Represented as a directed graph, where neurons correspond to
nodes and synaptic connections correspond to edges.

45 / 62



Neural Networks 1 - Artificial Neurons

Neural Network

Neural Network

Output Neurons

Their outputs together form the final output of the neural
network.

Typically: no outgoing edges to other neurons.

Input Neurons

Their inputs are the input patterns.

Typically: no incoming edges from other neurons.

Network Output (Response)

Defined by the activities of the output neurons.

46 / 62



Neural Networks 1 - Artificial Neurons

Neural Network

Neural Network

Definition: A neural network is a six-tuple (N,C , I ,O,w , t):

N is a finite non-empty set of neurons.

C ⊆ N × N is a non-empty set of directed connections
(edges) between neurons.

I ⊆ N is a non-empty set of input neurons.

O ⊆ N is a non-empty set of output neurons.

w : C → R is a weight function.

t : N → R is a bias function.

Neural Network Configuration

Defined by the weights of all edges and the biases of all
neurons.

47 / 62



Neural Networks 1 - Artificial Neurons

Neural Network

Neural Network

Neural Network Architecture

Cyclic, recurrent networks: allow feedback connections.
Acyclic, feedforward networks: all connections go in the
same direction (i.e., the graph can be topologically ordered).

Hierarchical (layered) networks: divided into layers, with
connections only between neurons in consecutive layers.

48 / 62



Neural Networks 1 - Artificial Neurons

Logical Threshold Circuit

Neural Networks 1 - Lecture 3: Artificial Neuron

1 Review

2 From Biological to Artificial Neurons

3 Mathematical Model of a Neuron

4 Perceptron and Logical Function Representation

5 Neural Network

6 Logical Threshold Circuit

7 Linear Separability

49 / 62



Neural Networks 1 - Artificial Neurons

Logical Threshold Circuit

Logical Threshold Circuit

Using perceptrons for NOT, ID, AND, and OR, we can
construct a neural network representing more complex logical
functions.

x
-1

y

0

x
1

y

0

x1

x1

x2

+1

+1

+1

y

1-n

x1

x1

x2

+1

+1

+1

y

n-1

AND represents the intersection of convex regions, while OR
represents their union.

Questions: How does the logical function implemented by a
perceptron changes if:

All weights (including the bias) are multiplied by a positive
number?
All weights (including the bias) are multiplied by a negative
number (e.g., -1)?
Some weights are multiplied by -1? 50 / 62



Neural Networks 1 - Artificial Neurons

Logical Threshold Circuit

Logical Threshold Circuit - Examples

Example 1: Crop Yield Prediction

yield = ((warm ∧ rain) ∨ (warm ∧ irrigation)) ∧ fertilizer ∧ ¬pests

1 Design a perceptron network for this logical function using
basic logical operations.

How many inputs, outputs, neurons, and layers does it require?

2 Design a perceptron network with a hierarchical (layered)
architecture.

3 Minimize this logical function and design a neural network for
the simplified version.

4 Can this logical function be represented by a single
perceptron?

51 / 62



Neural Networks 1 - Artificial Neurons

Logical Threshold Circuit

Logical Threshold Circuit - Examples

Example 2: Majority Circuit

y = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

1 Design a neural network for the majority circuit using basic
logical operations.

2 Can it be represented by a single perceptron?

3 What would the solution look like for the general case (for
arbitrary n)?

52 / 62



Neural Networks 1 - Artificial Neurons

Logical Threshold Circuit

Perceptron Network as a Logical Threshold Circuit

Theorem:
Every logical formula can be expressed in Disjunctive Normal
Form (DNF), i.e., as a disjunction of conjunctions of atoms,
where atoms are variables or their negations.

Disjunction: F = K1 ∨ K2 ∨ ... ∨ Kn

Conjunction: Ki = Ai1 ∧ Ai2 ∧ ... ∧ Aini

Atoms: Aij = L or Aij = ¬L
Example: y = (x2 ∧ x4) ∨ ¬x1 ∨ (x2 ∧ ¬x3)
Consequence:
Every logical function can be represented by a perceptron-based
neural network.

Question: Design a schematic of such a perceptron neural
network. How many layers will it have?

53 / 62



Neural Networks 1 - Artificial Neurons

Logical Threshold Circuit

Perceptron Network as a Logical Threshold Circuit

Similarly:
Every logical formula can be expressed in Conjunctive Normal
Form (CNF), i.e., as a conjunction of disjunctions of atoms,
where atoms are variables or their negations.

Conjunction: F = D1 ∧ D2 ∧ ... ∧ Dn

Disjunction: Di = Ai1 ∨ Ai2 ∨ ... ∨ Aini

Atoms: Aij = L or Aij = ¬L
Example: y = (x2 ∨ x4) ∧ ¬x1 ∧ (x2 ∨ ¬x3)
Implementation using a Perceptron Network: Analogous to
DNF

AND represents the intersection of convex regions, while OR
represents their union.

54 / 62



Neural Networks 1 - Artificial Neurons

Logical Threshold Circuit

Logical Threshold Circuit - Examples

Example 3: Exclusive OR (XOR)

XOR cannot be implemented using a single perceptron.

x1

-1

-1

+1

+1

0 1

1

-1

-1

x2

However, XOR can be implemented using a perceptron
network.

55 / 62



Neural Networks 1 - Artificial Neurons

Logical Threshold Circuit

Logical Threshold Circuit - Examples

Example 3: Exclusive OR (XOR) - Optional Homework for
Next Time

1 XOR can be represented using basic logical operations (AND,
OR, NOT) in different ways. Can you design multiple
representations?

2 Design the smallest possible neural network that can represent
XOR. How many neurons does it contain?

x1 x2 y = x1 ⊗ x2
-1 -1 -1
-1 +1 +1
+1 -1 +1
+1 +1 -1

56 / 62



Neural Networks 1 - Artificial Neurons

Logical Threshold Circuit

Logical Threshold Circuit - Examples

Example 3: Exclusive OR (XOR) - Optional Homework for
Next Time

1 XOR can be represented using basic logical operations (AND,
OR, NOT) in different ways. Can you design multiple
representations?

2 Design the smallest possible neural network that can represent
XOR. How many neurons does it contain?

57 / 62



Neural Networks 1 - Artificial Neurons

Linear Separability

Neural Networks 1 - Lecture 3: Artificial Neuron

1 Review

2 From Biological to Artificial Neurons

3 Mathematical Model of a Neuron

4 Perceptron and Logical Function Representation

5 Neural Network

6 Logical Threshold Circuit

7 Linear Separability

58 / 62



Neural Networks 1 - Artificial Neurons

Linear Separability

Linear Separability

→ The perceptron can function as a linear classifier, categorizing
patterns into two classes (here P, P) using a decision hyperplane:

w⃗ x⃗ + w0 =
n∑

i=1

wixi + w0 = 0

x2

w.x + w0 = 0

x1-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

59 / 62



Neural Networks 1 - Artificial Neurons

Linear Separability

Linear Separability

Definition:
Two sets, P and P, are linearly separable in an n-dimensional
space if there exist real numbers w0,w1, ...,wn such that:
For each point x⃗ ∈ P:

∑n
i=1 wixi + w0 > 0 For each point x⃗ ∈ P:∑n

i=1 wixi + w0 < 0

Why was this concept
introduced?
→ Researchers investigated
which functions could be
implemented by a perceptron
(or, more generally, a linear
classifier) and which could
not.

x2

w.x + w0 = 0

x1-3 -2 -1 0 1 2 3

-3

-2

-1

1

2

3

60 / 62



Neural Networks 1 - Artificial Neurons

Linear Separability

Linear Separability in Boolean Space for n = 2

There are a total of 24 = 16 logical functions, out of which 14
are linearly separable:

6 simple logical functions:

0, 1,A,B,¬A,¬B

→ trivial cases
8 variations of conjunction and disjunction:

A ∧ B,A ∧ ¬B,¬A ∧ B,¬A ∧ ¬B

A ∨ B,A ∨ ¬B,¬A ∨ B,¬A ∨ ¬B

→ slightly more complex cases

2 functions are not linearly separable and thus cannot be
realized using a perceptron:

A⊗ B (XOR) and A ⇔ B (Equivalence)

61 / 62



Neural Networks 1 - Artificial Neurons

Linear Separability

Linear Separability in General Boolean Space

For a general Boolean space:

n = 2 ... 14 out of 24 = 16 logical functions are linearly
separable.

n = 3 ... 104 out of 28 = 256 functions are separable.

n = 4 ... 1882 out of 216 = 65536 functions are separable.

n general ... ??

→ The number of functions that cannot be represented by a
perceptron is significant, and their proportion increases with the
dimensionality of the feature (input) space.
How can we address this?

Instead of using a single neuron, we can use a perceptron
network.

We can extend the feature space by adding additional
variables.

62 / 62


	Review
	From Biological to Artificial Neurons
	Mathematical Model of a Neuron
	Perceptron and Logical Function Representation
	Neural Network
	Logical Threshold Circuit
	Linear Separability

