Neural Networks 1 - Self-organization

Neural Networks 1 - Self-organization 18NES1 - Lecture 12, Summer semester 2024/25

Zuzana Petříčková

May 6th, 2025

イロン 不同 とくほど 不良 とうほ

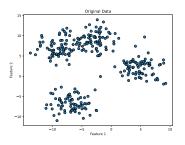
This Week

Unsupervised Learning (Self-Organization)

- Clustering and the k-Means Algorithm
- Other clustering algorithms: hierarchical clustering
- Single-layer neural network and competitive learning (e.g., online k-means)
- Self-organising feature maps (SOM)
- Demonstrations and examples

Unsupervised Learning and Self-Organization

- Training set T in the form $T = {\vec{x_1}, \dots, \vec{x_N}}$ (only inputs)
- $\vec{x_i} \in \mathbb{R}^n$ is the *i*-th training input pattern, target outputs are unknown
- Idea: the model itself decides which response is best for a given input and adjusts its weights accordingly \rightarrow self-organization



- We have data but no knowledge of its internal structure
- The goal is to uncover the structure and patterns within the data

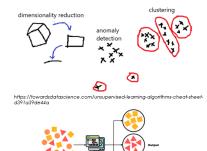
イロン イボン イヨン イヨン 三日

Neural Networks 1 - Self-organization Unsupervised Learning

Unsupervised Learning and Self-Organization

- Goal: to discover structure or patterns within the data
- Applications:
 - Dimensionality reduction (data compression, visualization)
 - Anomaly detection (e.g., in banking transactions)
 - Clustering (e.g., customer segmentation, plagiarism detection)
 - E-commerce: recommendation systems

Types of Tasks:



https://eastgate-software.com/what-is-unsupervised-learning/#ftoc-heading-7

Neural Networks 1 - Self-organization Unsupervised Learning Clustering

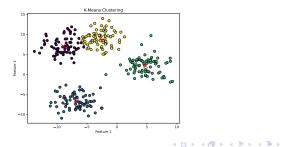
Unsupervised Learning and Self-Organization

Cluster

- A group of samples with high similarity among themselves and low similarity to samples in other clusters
- In simplified terms: similarity = proximity

Clustering

• Disjoint partitioning of data into clusters

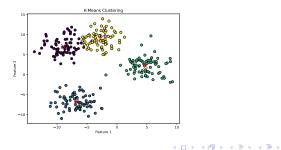


Neural Networks 1 - Self-organization Unsupervised Learning Clustering

Clustering

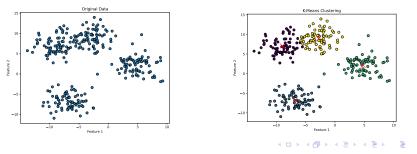
Challenges:

- How to determine the number and distribution of clusters in the feature space?
- How to choose the representative(s) of a cluster?
 - Appropriately selected training samples belonging to a cluster
 - Example: the centroid of a cluster



The k-Means Clustering Algorithm

- Unsupervised learning
- Input patterns are classified into k different clusters, each cluster l is represented by its centroid c
 _l
- A new vector \vec{x} is assigned to the cluster *i* whose centroid $\vec{c_l}$ is closest to it



The k-Means Clustering Algorithm

- **(**) Given a training set $T = {\vec{x_1}, ..., \vec{x_N}}, \vec{x_i} \in \mathbb{R}^n$
- Select k random vectors $\vec{c}_l, l = 1, ..., k$ (from \mathbb{R}^n or from T) as initial cluster centroids
- 8 Repeat:
 - \bullet Assign each vector from ${\mathcal T}$ to the nearest cluster centroid
 - Recalculate the cluster centroids based on assigned patterns:

$$ec{c}_{l} = rac{1}{n_{l}}\sum_{l_{i}=1}^{n_{l}}(ec{x_{l_{i}}})$$

where n_l is the number of vectors assigned to cluster l, and l_i indexes vectors assigned to cluster l

• Repeat the above steps until the cluster memberships of training patterns no longer change

イロト 不同 トイヨト イヨト 二日

Parameters of the k-Means Algorithm

- Number of clusters k How to set it?
- Distance metric How to compute the distance (similarity) between numerical vectors?
- Initialization method How to initialize positions of the centroids?
- Stopping criteria When to stop trraining?

Parameters of the k-Means Algorithm

How to compute the distance (similarity) between numerical vectors?

- Euclidean distance: $d(\vec{p}, \vec{q}) = \sqrt{\sum_{i=1}^{n} (p_i q_i)^2}$
- When only comparing distances (for efficiency), it is common to use the squared distance:

 $d(\vec{p},\vec{q})=\sum_{i=1}^{n}(p_i-q_i)^2$

Other distance metrics include:

- Manhattan (city block) distance: $d(\vec{p}, \vec{q}) = \sum_{i=1}^{n} |p_i q_i|$
- Chebyshev distance: d(p, q) = max_i |p_i q_i| "What is the biggest problem?"
- Minkowski distance: $d(\vec{p}, \vec{q}) = (\sum_{i=1}^{n} |p_i q_i|^r)^{\frac{1}{r}}$ Generalizes the previous metrics $(r = 2, r = 1, r \to \infty)$
- Cosine similarity: cos(p, q) = privative quantum quantum

Parameters of the k-Means Algorithm

Initialization in k-Means

- The result of k-means depends heavily on the initial choice of centroids.
- Poor initialization \rightarrow poor clustering, slow convergence, getting stuck in a local minimum.
- Initialization options:
 - Random vectors in \mathbb{R}^n or within the range of the data
 - Random selection of points from the training set T
 - k-means++:
 - First centroid is chosen randomly
 - Subsequent centroids are chosen with probability proportional to the square of the distance to the nearest already chosen centroid
 - Running the algorithm multiple times and selecting the best solution (lowest sum of squared distances)

Parameters of the k-Means Algorithm

- Number of clusters k (usually specified by the user)
- Distance metric (default: Euclidean)
- Initialization method (random, k-means++, custom choice)
- Stopping criteria:
 - until cluster memberships stop changing
 - until centroids stop changing
 - reaching a maximum number of iterations
- Further improvements: If a centroid has no points assigned, reinitialize it

Example (Demonstration)

kmeans_clustering.ipynb

- Demonstration of a custom implementation of the k-means algorithm with visualization of the learning process
- Several datasets and different initialization options

Questions:

- How does centroid initialization affect learning?
- How long does learning take for larger datasets?
- How to find the optimal number of clusters?
- How to evaluate the quality of the clusters formed?

The k-Means Clustering Algorithm

Advantages

- Fast algorithm, easy to implement
- Suitable for quick insight into data structure

Disadvantages

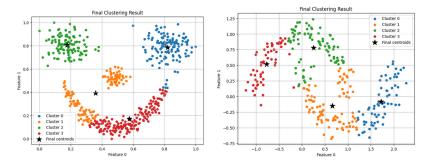
- The number of clusters must be specified in advance
- Batch processing (problematic for large data or online learning)
- High sensitivity to the initial choice of centroids
- Sensitive to outliers
- May fail for complex data structures: seeks spherical clusters
- Problematic for high-dimensional data (*curse of dimensionality*), or strongly correlated features

イロト 不同 トイヨト イヨト 二日

The k-Means Clustering Algorithm

Examples of More Complex Tasks:

kmeans_clustering.ipynb



More examples by ScikitLearn

The k-Means Clustering Algorithm

Disadvantages and Their Solutions

- The number of clusters must be specified in advance
 → try different values of k and choose the best one
- Batch processing (problematic for large datasets or online learning)
 - \rightarrow minibatch or online k-Means
- High sensitivity to the initial choice of centroids \rightarrow enhanced initialization
- Sensitivity to outliers
 - \rightarrow data normalization:
 - also ensures invariance to scaling and translation
 - but may not always help (e.g., it may bring distant clusters closer)

The k-Means Clustering Algorithm

Disadvantages and Their Solutions

- May fail for complex data structures: tends to find spherical clusters
 - \rightarrow use a different distance metric
- Problems with high-dimensional input data (*curse of dimensionality*), or strongly correlated features
 → apply PCA (Principal Component Analysis) for input preprocessing

PCA Analysis

PCA (Principal Component Analysis)

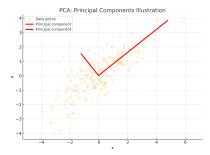
- Dimensionality reduction of input data:
 - use fewer features without losing essential information,
 - select the most important features (principal components).
- Each principal component (PC) is an orthogonal direction that captures the maximum possible variance in the data.
- The most important feature (the first principal component) is a unit vector \vec{w} that maximizes the variance of the projections of all data points:

$$ec{w} = rg\max_{\|ec{w}\|=1}rac{1}{N}\sum_{i=1}^N (ec{w}^ op ec{x}_i)^2$$

 In other words, we seek the direction in which the data is the most "spread out".

PCA Analysis

PCA (Principal Component Analysis)



- Each principal component explains a portion of the total variance in the data.
- Common strategy: keep enough components to explain e.g. 90–95% of the total variance.

э

Metrics for Evaluating Clustering Quality

How can we tell if the clusters produced by an algorithm are actually good?

- Visual assessment works only for low-dimensional data (e.g., 2D or 3D)
- For general high-dimensional data, we need to define metrics that allow automatic evaluation:
 - **Compactness:** are the points within a cluster close to each other?
 - Separability: are the clusters well separated from each other?
- Such metrics can also be used to determine the optimal number of clusters
- However, no single metric works best for all types of data and situations

Metrics for Evaluating Clustering Quality

Silhouette

• Measures how close each point in a cluster is to points in the same cluster compared to points in other clusters.

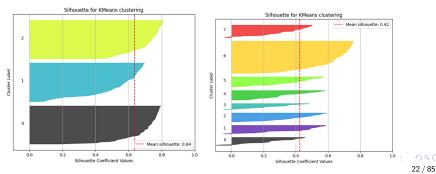
$$S(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

- S(i) is the silhouette score for point i
- *a*(*i*) is the average distance from point *i* to other points in the same cluster
- b(i) is the average distance from point *i* to points in the nearest neighboring cluster
- The closer the value is to 1, the better the point is assigned; values around 0 indicate boundary points; negative values suggest misclassification
- A popular metric for selecting the optimal number of clusters (it should be maximized)

Metrics for Evaluating Clustering Quality

Silhouette

- Results can be visualized using a silhouette plot:
 - each sample is represented by a horizontal bar (its length corresponds to *S*(*i*))
 - ideally, all bars are long and positive
 - a red vertical line shows the average silhouette score across all points



Metrics for Evaluating Clustering Quality

Davies-Bouldin Index

- Measures the compactness of clusters and their separation
- Evaluates "outlierness" of clusters by comparing centroid distances and intra-cluster distances

$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \left(\frac{s_i + s_j}{d(c_i, c_j)} \right)$$

- *k* is the number of clusters
- *s_i* is the average distance of the points in cluster *i* from its centroid *c_i* (compactness)
- $d(c_i, c_j)$ is the distance between the centroids of clusters i and j

Metrics for Evaluating Clustering Quality

Calinski-Harabasz Index

• Measures within-cluster similarity and between-cluster dissimilarity using variance

$$CH = rac{B(k)}{W(k)} imes rac{n-k}{k-1}$$

- B(k) is the between-cluster sum of squares
- W(k) is the within-cluster sum of squares
- *n* is the total number of points

Metrics for Evaluating Clustering Quality

Within-Cluster Sum of Squares (WCSS)

- Sum of squared distances between individual points and the centers of their assigned clusters.
- Lower WCSS indicates more compact clusters.
- Typically decreases with increasing number of clusters k.

$$WCSS = \sum_{i=1}^{k} \sum_{x \in C_i} ||x - \mu_i||^2$$

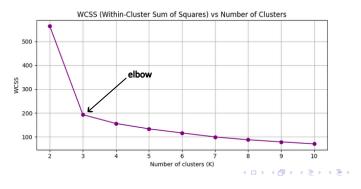
- C_i is the set of points assigned to the *i*-th cluster,
- μ_i is the centroid of the *i*-th cluster.
- Used in the **Elbow Method** to determine the optimal number of clusters.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

How to Use Metrics to Determine the Optimal Number of Clusters?

WCSS (Elbow Method):

- Monitor the decrease in within-cluster sum of squares.
- Choose k at the "elbow" point, where increasing k no longer significantly reduces WCSS.



3

How to Use Metrics to Determine the Optimal Number of Clusters?

• WCSS (Elbow Method):

- Monitor the decrease in within-cluster sum of squares.
- Choose k at the "elbow" point, where increasing k no longer significantly reduces WCSS.

• Silhouette Score, Calinski-Harabasz Index:

• Select the *k* with the highest index value.

• Davies-Bouldin Index:

• Select the k with the lowest index value (lower = better separation of clusters).

Note: Different metrics may suggest different optimal k — it is advisable to consider multiple criteria when making a decision.

kmeans_clustering.ipynb,

The k-Means Clustering Algorithm

Application: Vector Quantization

- The goal is to cover the input space as efficiently as possible using representatives, respecting the statistical distribution of the patterns (similar to density estimation in statistics)
- Represent a set of vectors with a smaller subset of representative vectors
- Lossy data compression

vector_quantization.ipynb

- Explore how clustering can be used for vector quantization:
 - Try different numbers of centroids and compare the results
 - Experiment with different images (photographs)

Other Approaches to Clustering

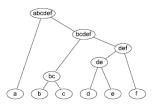
K-means is not the only way to partition data into clusters.

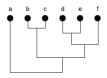
- Different algorithms are better suited for different types of data
- Some methods do not require specifying the number of clusters in advance
- Others can detect clusters of arbitrary shapes or handle categorical data
- Common alternatives include:
 - hierarchical clustering
 - density-based clustering (e.g., DBSCAN)
 - spectral clustering uses the eigenvectors of a similarity graph to partition data into clusters
 - model-based clustering (e.g., Gaussian Mixture Models)

Nice comparison: Scikit Learn

Hierarchical Clustering

- No need to know the expected number of clusters in advance.
- Initially, each training sample represents its own cluster.
- A distance matrix between training samples is computed.
- During learning, the two closest clusters are merged iteratively.
- Visualization: dendrogram





Source: Kateřina Horaisová: Slides for the Neural Networks 2 course, FNSPE CTU Děčín

Hierarchical Clustering

How to define distance between clusters C_i , $C_i \subset R^n$?

- Single linkage (nearest neighbor) $d(C_i, C_j) = \min\{d(\vec{x}, \vec{y}) | \vec{x} \in C_i, \vec{y} \in C_j, i \neq j\}$
- Complete linkage (farthest neighbor) $d(C_i, C_j) = \max\{d(\vec{x}, \vec{y}) | \vec{x} \in C_i, \vec{y} \in C_j, i \neq j\}$
- Average linkage $d(C_i, C_j) = \frac{1}{m_i m_j} \sum_{\vec{x} \in C_i} \sum_{\vec{x}' \in C_j} d(\vec{x}, \vec{y})$
- Centroid linkage $d(C_i, C_j) = d(\vec{\mu}_i, \vec{\mu}_j)$
- Ward's minimum variance method $d(C_i, C_j) = \frac{m_i m_j}{m_i + m_j} d(\vec{\mu}_i, \vec{\mu}_j)$

Hierarchical Clustering

• Single linkage (nearest neighbor, min)

• Suitable for elongated clusters, but sensitive to noise.

• Complete linkage (farthest neighbor, max)

- Prefers compact, spherical clusters.
- Reduces the creation of elongated clusters.

Average linkage

- A compromise between single and complete linkage.
- More stable in the presence of noise.

Centroid linkage

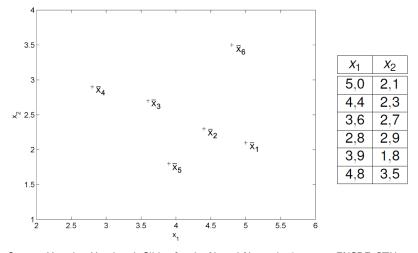
• Faster computation, but may sometimes incorrectly merge distant clusters.

Ward's method

- Minimizes the total within-cluster variance.
- Produces compact and similarly sized clusters.

イロト 不同 トイヨト イヨト 二日

Hierarchical Clustering - Example



Source: Kateřina Horaisová: Slides for the Neural Networks 2 course, FNSPE CTU Děčín 33/85

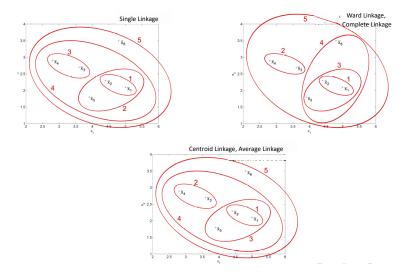
Hierarchical Clustering - Example

Distance matrix between training samples:

	\overline{X}_1	\overline{X}_2	\overline{X}_3	\overline{X}_4	\overline{X}_5	\overline{X}_{6}
\overline{X}_1	0,0000	0,6325	1,5232	2,3409	1,1402	1,4142
\overline{X}_2	0,6325	0,0000	0,8944	1,7088	0,7071	1,2649
\overline{X}_3	1,5232	0,8944	0,0000	0,8246	0,9487	1,4422
\overline{X}_4	2,3409	1,7088	0,8246	0,0000	1,5556	2,0881
\overline{X}_5	1,1402	0,7071	0,9487	1,5556	0,0000	1,9235
\overline{X}_{6}	1,4142	1,2649	1,4422	2,0881	1,9235	0,0000

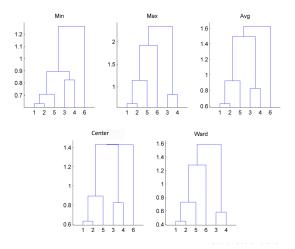
Source: Kateřina Horaisová: Slides for the Neural Networks 2 course, FNSPE CTU Děčín

Hierarchical Clustering - Example



Source: Kateřina Horaisová: Slides for the Neural Networks 2 course; FNSPE CTU Děčín 35/85

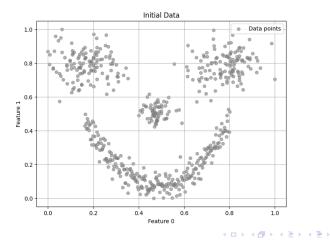
Hierarchical Clustering - Example



Source: Kateřina Horaisová: Slides for the Neural Networks 2 course, FNSPE CTU Děčín

Hierarchical Clustering -Example

Think about it: Which variant of hierarchical clustering would best handle the following example?



37 / 85

Hierarchical Clustering

Reminder: How to compute distance in clustering methods

- Euclidean distance: $d(\vec{p}, \vec{q}) = \sqrt{\sum_{i=1}^{n} (p_i q_i)^2}$
- If only comparing distances (for efficiency): $d(\vec{p}, \vec{q}) = \sum_{i=1}^{n} (p_i - q_i)^2$

Alternative metrics:

- Manhattan (city block) distance: $d(\vec{p}, \vec{q}) = \sum_{i=1}^{n} |p_i q_i|$
- Chebyshev distance: $d(\vec{p}, \vec{q}) = \max_i |p_i q_i|$
- Minkowski distance: $d(\vec{p}, \vec{q}) = \left(\sum_{i=1}^{n} |p_i q_i|^r\right)^{\frac{1}{r}}$
- Cosine similarity: $\cos(\vec{p}, \vec{q}) = \frac{\vec{p} \cdot \vec{q}}{\|\vec{p}\| \|\vec{q}\|}$
- (and others)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example: Hierarchical Clustering

hierarchical_clustering.ipynb

- Demonstration of hierarchical clustering using the SciPy library
- Dendrograms shown for different linkage methods (single, complete, ward, etc.)

Questions:

- Observe differences between dendrograms produced using various distance metrics.
- Try to find the optimal combination of distance metric and number of clusters for each dataset.
- Can we determine the number of clusters from a dendrogram?

Example: Hierarchical Clustering

hierarchical_clustering.ipynb

Forming clusters based on a dendrogram:

- Fixed number of clusters
- Cutting the tree at a distance threshold splits the dendrogram at a chosen height (height = linkage distance)
- Adaptive cutting using inconsistency coefficient local decisions based on deviations from earlier merges

Inconsistency Coefficient in Hierarchical Clustering

The **inconsistency coefficient** helps identify where to cut the dendrogram based on how much a given merge deviates from previous (lower-level) merges.

$$\mathsf{inconsistency}(i) = \frac{d_i - \mu_i}{\sigma_i}$$

- d_i height (distance) of the merge at step i
- μ_i average linkage height of the previous r levels
- σ_i standard deviation of those *r* linkage heights

A higher value indicates that the merge likely connects structurally different clusters.

• We cut branches where the inconsistency exceeds a given threshold – this allows for cutting at varying heights across the tree.

Hierarchical Clustering

Advantages

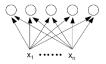
- Hierarchical structure, easy interpretation.
- No need to predefine the number of clusters, low parameter requirements.
- Handles clusters of different shapes better than *k*-means.

Disadvantages

- Computationally expensive.
- Cannot update incrementally (online learning is not possible).
- Sensitive to the choice of distance metric and linkage method.
- Sensitive to outliers.
- Interpretation becomes difficult for a large number of clusters.

Competitive Models and Competitive Learning

• Let us return to the single-layer neural network model.



- Key idea: Neurons (representatives, agents) correspond to points in the input space, each representing one cluster (or part of it).
- The system of representatives (neurons) self-organizes in the input space (unsupervised learning = self-organization).

Competitive Models and Competitive Learning

Basic principle = competition:

• Neurons compete for the ,,right" to represent the given input pattern.

Learning goal:

- Place neurons in the centers of the pattern clusters (*centroids*) or in a way that reflects the data density (vector quantization).
- Preserve the network structure that has already been formed.

Competitive Models and Competitive Learning

K-means is actually a variant of competitive learning:

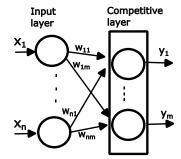
• Winner-takes-all rule: Centroids (representatives) compete to represent a training pattern. The nearest centroid wins and blocks others — it "takes all".

Typical mechanisms in competitive learning:

- Winner-takes-all: only the winning neuron is updated.
- Not just winner-takes-all (soft competition): the pattern affects not only the winner but also nearby neurons (neighbors).
- Lateral inhibition: the winner suppresses the activity of competitors.

Competitive Models – Basic Architecture

- A single-layer neural network.
- The input layer corresponds to the input features.
- The number of neurons in the output (competitive) layer corresponds to the (expected) number of clusters or representatives.



- Each input neuron is connected to every output neuron.
- There may also be **lateral connections** between output neurons.

Competitive Models – Basic Architecture

How do neurons compute their output (activation) for a given input pattern?

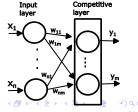
- As a distance between the presented input and their weight vector.
- For Euclidean distance (square root can be omitted):

$$d(\vec{x}, \vec{w}_i) = ||\vec{x} - \vec{w}_i||^2 = \sum_{j=1}^{n} (x_j - w_{ji})^2$$

• For cosine similarity (to be maximized):

$$d(\vec{x}, \vec{w}_i) = \cos(\vec{x}, \vec{w}_i) = \frac{\vec{x} \cdot \vec{w}_i}{\|\vec{x}\| \|\vec{w}_i\|}$$

For normalized vectors: $d(\vec{x}, \vec{w}_i) = \vec{x} \cdot \vec{w}_i$



47 / 85

Competitive Models - Principle of Competition

- **1** Present the input pattern \vec{x}
- Second Secon
- Seurons then compete for the right to represent the input.
- The winning neuron (or several) updates its weights to move closer to the input.

Competition can be implemented in different ways:

- **1** via lateral connections and lateral inhibition
- by directly comparing neuron activations (i.e., distances to the input)

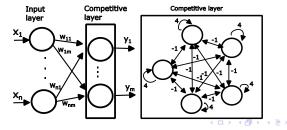
Competitive Models and Lateral Inhibition

Lateral inhibition principle:

- Output neurons are fully connected via fixed lateral weights:
 - $t_{ii} = (k-1)$ and $t_{ij} = -1$ for $i \neq j$ (k = number of neurons)
- Each neuron iteratively updates its activation:

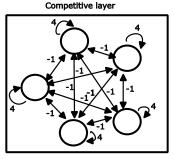
$$y_i = f\left(\sum_{l=1}^k t_{li} y_l\right)$$

where f is typically a sigmoid function.



Competitive Models and Lateral Inhibition

- More active neurons suppress (inhibit) the activity of the others.
- Expected result after a few iterations: one neuron remains active, others are inhibited.



3

Competitive Models and Lateral Inhibition

How to implement competition between neurons:

- Using lateral connections and iterative computation:
 - Does not always produce good results can blur the differences between neuron activities.
- By comparing neuron outputs directly (i.e., distances to the input pattern):
 - The winner is the neuron with the highest activation (or lowest distance) winner takes all.
 - Easier to implement, more stable in practice.

Competitive Models - Winner Takes All (WTA) Variant

Adaptation rule:

• The winning neuron *i* updates its weights to move closer to the presented input pattern *x*:

$$ec{w}_i(t+1) = rac{ec{w}_i(t) + lpha ec{x}}{\|ec{w}_i(t) + lpha ec{x}\|}$$

(for cosine similarity, Hebbian rule)

$$ec{w_i}(t+1) = ec{w_i}(t) + lpha \left(ec{x} - ec{w_i}(t)
ight)$$

(for Euclidean distance, difference rule)

Learning rate $\dots \alpha$

- $\alpha = 1$... complete update to match the input
- $0 < \alpha < 1 \dots$ partial update toward the input pattern
- $\alpha = 0$... no update (converged state)

With constant α , the network usually does not converge ... we require $\alpha \to 0$ over time.

Competitive Models – Winner Takes All (WTA) Variant Formal Algorithm (Euclidean Distance)

Input

- Training set $T = \{\vec{x_1}, ..., \vec{x_N}\}$ in \mathbb{R}^n
- Single-layer neural network with k output neurons.

Initialization

• Initialize weight vectors $\vec{w_1}, ..., \vec{w_k}$ randomly (or by choosing k random examples from T)

Repeat:

- Randomly select an input $\vec{x} \in T$
- Compute $d(\vec{x}, \vec{w}_i)$ for i = 1, ..., k
- Choose winner neuron m such that $d(\vec{x}, \vec{w}_m) \leq d(\vec{x}, \vec{w}_i)$ for all i
- Update:

$$\vec{w}_m(t+1) = \vec{w}_m(t) + \alpha \left(\vec{x} - \vec{w}_m(t)\right)_{(1) \to (1)} = 0$$

Competitive Models – Winner Takes All (WTA) Variant Applications

Clustering

- Online learning essentially an online version of the k-means algorithm (i.e. k-means is the batch version of WTA competitive learning)
- Easy identification of cluster representatives $\vec{w_i}$
- The number of clusters is fixed in advance
- More robust to noise than k-means
- Data compression, feature extraction, dimensionality reduction
- Anomaly detection

kmeans_clustering.ipynb neural_gas.ipynb

Competitive Learning – Winner Takes All Variant Limitations

Common issues (similar to k-means):

- \bullet Learning rate α must be carefully chosen
- Weight initialization significantly impacts training speed
 - e.g. use randomly selected input vectors
- Distribution of neurons may not reflect data density
- Dead neurons some neurons may never win
 - Normalize weight vectors
 - Controlled competition: track how often each neuron wins (conscience mechanism)
 - Soft competition (winner doesn't take all)
 - Introduce topological neighborhood structures, e.g., grid in a Kohonen layer

kmeans_clustering.ipynb neural_gas.ipynb

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Neural Networks 1 - Self-organization Competitive Models Neural Gas

Competitive Learning – "Winner Doesn't Take All" Variant

Neural Gas (soft competition):

- Idea: Each neuron has a degree of "sensitivity" to the training sample based on its distance from it.
- Unlike classic "winner-takes-all" where only one neuron is updated, here we update **all neurons** depending on how close they are to the input.
- Over time, both the learning rate and neighborhood size decrease the system gradually stabilizes.

Variants:

- Sometimes, the neuron's rank (order by distance) is used instead of the distance itself.
- The winner moves toward the sample, and others in its vicinity may be pushed away.

Neural Networks 1 - Self-organization Competitive Models Neural Gas

Competitive Learning – "Winner Doesn't Take All" Variant

Input:

- Training set $T = \{\vec{x_1}, ..., \vec{x_N}\}$ in \mathbb{R}^n
- Single-layer neural network with k output neurons

Initialization:

- Initialize weight vectors $\vec{w_1}, ..., \vec{w_k}$ randomly (or by randomly selecting k samples from T).
- Set a large initial neighborhood and high learning rate.

Repeat:

- Randomly select $\vec{x} \in T$
- Compute $d(\vec{x}, \vec{w_i})$ for i = 1, ..., k
- Update:
 - Adjust positions of all $\vec{w_i}$ based on their distance to \vec{x} and the current neighborhood size
 - Decrease the learning rate and neighborhood size over time

э

Neural Networks 1 - Self-organization Competitive Models Neural Gas

Competitive Learning – "Winner Doesn't Take All" Variant

Advantages of Neural Gas over WTA:

- **Smooth learning:** Multiple neurons are updated based on distance or rank.
- More stable training: Lower risk of so-called "dead neurons".
- Better space coverage: Neurons tend to spread more evenly across the input space.

Disadvantages / limitations:

- Efficiency the need to compute neuron rankings at every iteration
- Dynamic neighborhood spatial relations among neurons can change during training

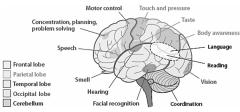
Example (Notebook):

neural_gas.ipynb

Self-Organizing Maps (SOM, Kohonen Maps) Teuvo Kohonen, 1981

 \bullet Original application: Phonetic typewriter (speech \rightarrow text in Finnish)

Biological Motivation:

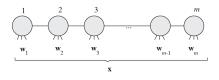


- In the cerebral cortex, specific areas of neurons are more responsive to certain types of stimuli.
- Physically nearby neurons tend to respond similarly lateral connections cause excitation of nearby neurons and inhibition of more distant ones.

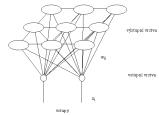
Source: https://cybernetist.com/2017/01/13/self-organizing-maps-in-go/

Self-Organizing Maps – Architecture (Topology)

1D architecture - linear chain:



2D architecture - grid:



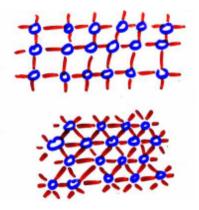
• Neurons are arranged topologically in a grid

- The grid defines physical neighborhood between neurons
 - (\times logical proximity in weight space)
- Neighboring neurons should respond to similar inputs

Paul Rojas: Neural Networks – A Systematic Introduction, Springer, 1996

Self-Organizing Maps – Grid Topologies

Examples of 2D grid topologies:

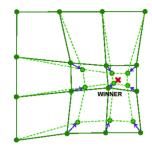


Self-Organizing Maps – Learning

Learning process:

- **1** Present an input vector \vec{x}
- Each neuron computes its (Euclidean) distance to x
- The neuron with the smallest distance is the winner (Best Matching Unit – BMU)
- The BMU and its neighbors update their weights
 - Neighboring neurons should respond similarly
 - \rightarrow mapping preserves topological structure

Weight adaptation:



SOM – Adaptation Rule

Adaptation

- Let k be the winning neuron for the presented input vector \vec{x}
- Each neuron *i* updates its weights according to the rule:

$$\Delta \vec{w}_i = \alpha \Lambda(i,k)(\vec{x}-\vec{w}_i)$$

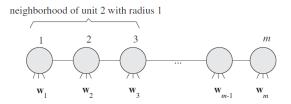
Neighborhood function = lateral interaction function $\Lambda(i, k)$

- Represents the strength of lateral interaction between neurons *i* and *k* during training
- Should decrease with increasing distance between neurons *i* and *k* in the grid
- Determines whether and how strongly neuron *i* will be updated, depending on its distance from the winning neuron k

SOM – Neighborhood Definition (1D Chain)

1D Neighborhood:

- Neurons are arranged in a sequence and indexed 1, ..., m
- A neuron with index k has neighbors k 1 and k + 1 (unless on the edge)

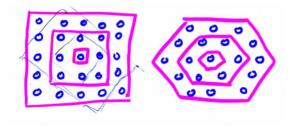


Paul Rojas: Neural Networks - A Systematic Introduction, Springer, 1996

SOM – Neighborhood Definition (2D Grid)

Neighborhood in multiple dimensions (2D grid):

- Similarly, the neighborhood of a neuron k (radius = 1) includes neurons connected via lateral links
- Any grid metric can be used: square, hexagonal, etc.



イロト 不同 とうほう 不同 とう

SOM - Neighborhood Function (Lateral Interaction)

Neighborhood function $\Lambda(i, k)$:

- Λ(i, k) = strength of lateral connection between neurons i and k during learning
- Should decrease with increasing distance between neurons *i* and *k*

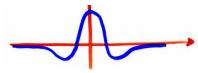
Example – Discrete Neighborhood:

- $\Lambda(i, k) = 1$ if neuron *i* is in neighborhood of *k* (within radius σ), otherwise 0
- Efficient to implement only neighbors are updated
- σ = neighborhood width (e.g. σ = 1)

SOM – Neighborhood Function (continued)

Mexican Hat function:

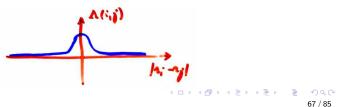
• Most biologically realistic



Gaussian function:

•
$$\Lambda(i,k) = \exp\left(-\frac{|\vec{w}_i - \vec{w}_k|^2}{\sigma^2}\right)$$

• σ is the neighborhood width (typically decreases: $\sigma
ightarrow$ 0)



SOM – Weight Adaptation and Parameters

Weight Update:

- Let k be the winning neuron (BMU) for input \vec{x}
- Each neuron *i* updates its weights as:

$$\Delta \vec{w}_i = \alpha \Lambda(i,k)(\vec{x}-\vec{w}_i)$$

Adjustable Parameters:

- Learning rate α (vigilance coefficient): $\alpha \in (0, 1)$
 - Fixed α prevents convergence typically $\alpha \rightarrow \mathbf{0}$
- Neighborhood width σ
 - Typically decreases: $\sigma \rightarrow 0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

SOM – Learning Algorithm

Initialization:

Randomly initialize weights of output neurons. Set initial learning rate α , neighborhood width σ , and interaction function Λ .

- 2 Repeat:
 - **①** Present the next training vector \vec{x}
 - **②** Compute distance d_i between \vec{x} and \vec{w}_i for each output neuron:

$$d_i = \sum_j (x_j - w_{ji})^2$$

- **③** Select neuron k with smallest d_k as the winner
- Opdate weights of all (or neighboring) neurons:

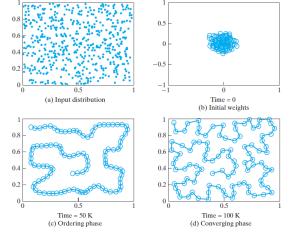
$$ec{w}_i(t+1) = ec{w}_i(t) + lpha(t) \Lambda(i,k)(ec{x} - ec{w}_i(t))$$

69 / 85

イロン 不同 とくほど 不良 とうほ

Self-Organizing Maps

Example – Uniformly distributed data and 1D chain

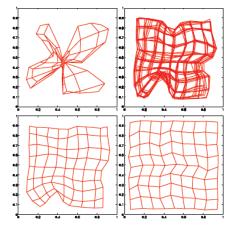


Simon Haykin: Neural Networks and Learning Machines, 3rd_edition, 2008

70 / 85

Self-Organizing Maps

Example – Uniformly distributed data and 2D grid

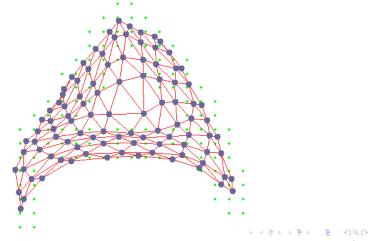


Paul Rojas: Neural Networks – A Systematic Introduction, Springer, 1996

э

Self-Organizing Maps

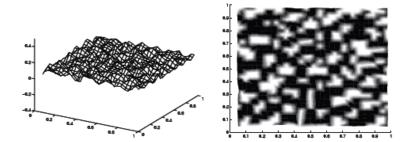
Example – Non-uniformly distributed data and 2D grid



Self-Organizing Maps – Interpretations

Two possible interpretations for applications:

- Dimensionality reduction with topology preservation
- Olustering

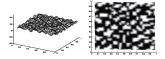


SOM – Dimensionality Reduction with Topology Preservation

- The network maps an *n*-dimensional input space into a 2D output space
- Neighborhood in the input space is preserved
- For very dense grids, the transformation is continuous
- Enables effective data visualization

Example:

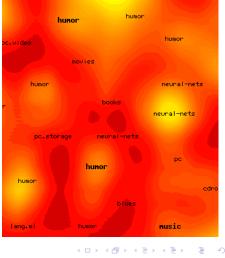
• 2D grid in 3D input space



SOM – Dimensionality Reduction Example: WebSOM

Dimensionality reduction with topology preservation

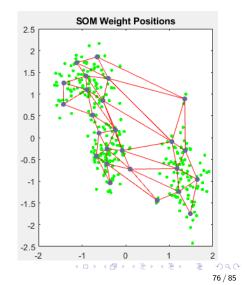
- Application example: WebSOM (1998)
- 2D visualization of similarity among web documents



SOM – Clustering Interpretation

Clustering interpretation:

- The weight vector of each output neuron represents a point in the input space
- Neurons cover the input space and reflect its density (vector quantization)
- Output neurons serve as cluster representatives
- Additionally, the neighborhood structure is preserved



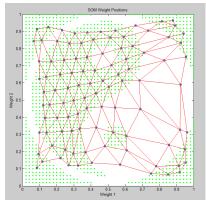
SOM – Learning Algorithm Analysis

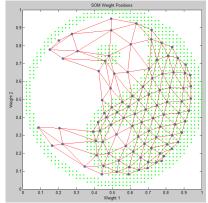
Key questions: How well has the SOM learned?

- Has the algorithm converged? How long does training take?
- To what extent is the topology preserved?
- Is the resulting mapping correct or meaningful?
- How do hyperparameters α , σ influence the result?

SOM – How well has the network learned?

Example: a well-trained model vs. a suboptimal one





SOM – How well has the network learned?

Within-Cluster Sum of Squares (WCSS):

• Measures compactness of clusters: sum of squared distances from inputs to their best-matching unit (BMU)

$$WCSS = \sum_{i=1}^{k} \sum_{\vec{x} \in C_i} \|\vec{x} - \mu_i\|^2$$

Topographic Error:

 Measures topology preservation: proportion of samples where the first and second BMUs are not adjacent in the SOM grid

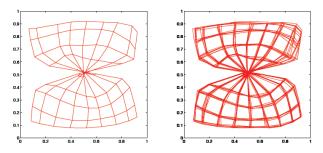
$$E=\frac{1}{n}\sum_{i=1}^{n}u(\vec{x}_{i})$$

where $u(\vec{x_i}) = 1$ if the first and second BMUs are not neighbors, otherwise 0.

SOM – Impact of Parameters

Choice of parameters α (learning rate), σ (neighborhood width) has a major impact:

- Depends on the task and dataset
- Rapid decrease of σ can lead to topological defects (e.g., map twisting or folding)



• Rapid decrease of α can freeze the learning process in a poor local minimum or prevent convergence entirely

SOM – Two-Phase Adaptation Strategy

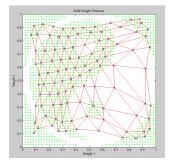
Two distinct learning phases:

- Organization phase (topology shaping):
 - Neighborhood covers most or all of the map
 - α is relatively large and stable
- Convergence phase (fine-tuning):
 - Neighborhood size shrinks to 1 (only the BMU is adapted)
 - α decreases rapidly toward 0

Neural Networks 1 - Self-organization Self-Organizing Maps (SOM) SOM – Visualization

SOM – Visualization

2D input data - easily visualized:



For higher dimensions:

• U-matrix (Unified Distance Matrix) – shows distances between neighboring neurons, Weight Planes

イロト 不同 とくほ とくほとう

э

82 / 85

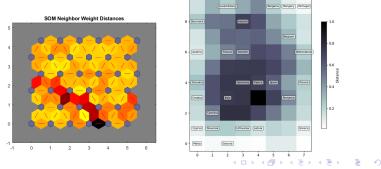
- Projection into 2D:
 - Using PCA
 - Using Sammon's mapping

Neural Networks 1 - Self-organization Self-Organizing Maps (SOM) SOM – Visualization

SOM – U-Matrix Visualization

U-Matrix (Unified Distance Matrix):

- Matrix showing distances between neighboring neurons' weight vectors
- Darker color = larger distance
- Clusters appear as "valleys", boundaries as "ridges"



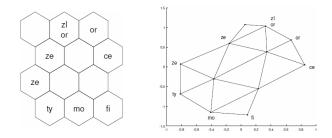
U-Matrix with Country Labels

Neural Networks 1 - Self-organization Self-Organizing Maps (SOM) SOM – Visualization

SOM – Sammon Mapping

Sammon Projection:

- Repositions data points in a low-dimensional space (not axis projection)
- Attempts to preserve distances between data points



Source: Kateřina Horaisová – Neural Networks 2 (FJFI ČVUT Děčín)

Kohonen Maps – Examples

- We will work with the MiniSom library
- SOM_countries.ipynb dimensionality reduction
- SOM_clustering.ipynb clustering