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Neural Networks 1 - Self-organization

This Week

Unsupervised Learning (Self-Organization)

Clustering and the k-Means Algorithm

Other clustering algorithms: hierarchical clustering

Single-layer neural network and competitive learning (e.g.,
online k-means)

Self-organising feature maps (SOM)

Demonstrations and examples
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Unsupervised Learning

Unsupervised Learning and Self-Organization

Training set T in the form T = {x⃗1, . . . , x⃗N} (only inputs)

x⃗i ∈ Rn is the i-th training input pattern, target outputs are
unknown

Idea: the model itself decides which response is best for a
given input and adjusts its weights accordingly →
self-organization
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Original Data

We have data but no
knowledge of its internal
structure

The goal is to uncover the
structure and patterns
within the data
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Unsupervised Learning

Unsupervised Learning and Self-Organization

Goal: to discover structure or
patterns within the data

Applications:
Dimensionality reduction
(data compression,
visualization)
Anomaly detection (e.g., in
banking transactions)
Clustering (e.g., customer
segmentation, plagiarism
detection)
E-commerce:
recommendation systems

Types of Tasks:
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Unsupervised Learning

Clustering

Unsupervised Learning and Self-Organization

Cluster

A group of samples with high similarity among themselves
and low similarity to samples in other clusters

In simplified terms: similarity = proximity

Clustering

Disjoint partitioning of data into clusters
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K-Means Clustering
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Unsupervised Learning

Clustering

Clustering

Challenges:

How to determine the number and distribution of clusters in
the feature space?

How to choose the representative(s) of a cluster?
Appropriately selected training samples belonging to a cluster
Example: the centroid of a cluster
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Unsupervised Learning

The k-Means Clustering Algorithm

The k-Means Clustering Algorithm

Unsupervised learning

Input patterns are classified into k different clusters,
each cluster l is represented by its centroid c⃗l

A new vector x⃗ is assigned to the cluster i whose centroid c⃗l
is closest to it
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Unsupervised Learning

The k-Means Clustering Algorithm

The k-Means Clustering Algorithm

1 Given a training set T = {x⃗1, ..., x⃗N}, x⃗i ∈ Rn

2 Select k random vectors c⃗l , l = 1, ..., k (from Rn or from T )
as initial cluster centroids

3 Repeat:

Assign each vector from T to the nearest cluster centroid
Recalculate the cluster centroids based on assigned patterns:

c⃗l =
1

nl

nl∑
li=1

(x⃗li )

where nl is the number of vectors assigned to cluster l ,
and li indexes vectors assigned to cluster l
Repeat the above steps until the cluster memberships of
training patterns no longer change
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Unsupervised Learning

The k-Means Clustering Algorithm

Parameters of the k-Means Algorithm

Number of clusters k - How to set it?

Distance metric - How to compute the distance (similarity)
between numerical vectors?

Initialization method - How to initialize positions of the
centroids?

Stopping criteria - When to stop trraining?
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Unsupervised Learning

The k-Means Clustering Algorithm

Parameters of the k-Means Algorithm

How to compute the distance (similarity) between numerical
vectors?

Euclidean distance: d(p⃗, q⃗) =
√∑n

i=1(pi − qi )2

When only comparing distances (for efficiency), it is common
to use the squared distance:
d(p⃗, q⃗) =

∑n
i=1(pi − qi )

2

Other distance metrics include:

Manhattan (city block) distance: d(p⃗, q⃗) =
∑n

i=1 |pi − qi |
Chebyshev distance: d(p⃗, q⃗) = maxi |pi − qi | ”What is the
biggest problem?”

Minkowski distance: d(p⃗, q⃗) = (
∑n

i=1 |pi − qi |r )
1
r

Generalizes the previous metrics (r = 2, r = 1, r → ∞)
Cosine similarity: cos(p⃗, q⃗) = p⃗·q⃗

∥p⃗∥∥q⃗∥ We focus on the

direction, not the magnitude (useful for text processing)
(and others)
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Unsupervised Learning

The k-Means Clustering Algorithm

Parameters of the k-Means Algorithm

Initialization in k-Means

The result of k-means depends heavily on the initial choice of
centroids.

Poor initialization → poor clustering, slow convergence,
getting stuck in a local minimum.

Initialization options:

Random vectors in Rn or within the range of the data
Random selection of points from the training set T
k-means++:

First centroid is chosen randomly
Subsequent centroids are chosen with probability proportional
to the square of the distance to the nearest already chosen
centroid

Running the algorithm multiple times and selecting the best
solution (lowest sum of squared distances)
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Unsupervised Learning

The k-Means Clustering Algorithm

Parameters of the k-Means Algorithm

Number of clusters k (usually specified by the user)

Distance metric (default: Euclidean)

Initialization method (random, k-means++, custom choice)

Stopping criteria:

until cluster memberships stop changing
until centroids stop changing
reaching a maximum number of iterations

Further improvements: If a centroid has no points assigned,
reinitialize it
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Unsupervised Learning

The k-Means Clustering Algorithm

Example (Demonstration)

kmeans clustering.ipynb

Demonstration of a custom implementation of the k-means
algorithm with visualization of the learning process

Several datasets and different initialization options

Questions:

How does centroid initialization affect learning?

How long does learning take for larger datasets?

How to find the optimal number of clusters?

How to evaluate the quality of the clusters formed?
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Unsupervised Learning

The k-Means Clustering Algorithm

The k-Means Clustering Algorithm

Advantages

Fast algorithm, easy to implement

Suitable for quick insight into data structure

Disadvantages

The number of clusters must be specified in advance

Batch processing (problematic for large data or online
learning)

High sensitivity to the initial choice of centroids

Sensitive to outliers

May fail for complex data structures: seeks spherical clusters

Problematic for high-dimensional data (curse of
dimensionality), or strongly correlated features
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Unsupervised Learning

The k-Means Clustering Algorithm

The k-Means Clustering Algorithm

Examples of More Complex Tasks:
kmeans clustering.ipynb

More examples by ScikitLearn
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https://github.com/reitezuz/18NES1-2025-/blob/main/week11/kmeans_clustering.ipynb
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html
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Unsupervised Learning

The k-Means Clustering Algorithm

The k-Means Clustering Algorithm

Disadvantages and Their Solutions

The number of clusters must be specified in advance
→ try different values of k and choose the best one

Batch processing (problematic for large datasets or online
learning)
→ minibatch or online k-Means

High sensitivity to the initial choice of centroids
→ enhanced initialization

Sensitivity to outliers
→ data normalization:

also ensures invariance to scaling and translation
but may not always help (e.g., it may bring distant clusters
closer)
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Unsupervised Learning

The k-Means Clustering Algorithm

The k-Means Clustering Algorithm

Disadvantages and Their Solutions

May fail for complex data structures: tends to find spherical
clusters
→ use a different distance metric

Problems with high-dimensional input data (curse of
dimensionality), or strongly correlated features
→ apply PCA (Principal Component Analysis) for input
preprocessing
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Unsupervised Learning

The k-Means Clustering Algorithm

PCA Analysis

PCA (Principal Component Analysis)

Dimensionality reduction of input data:
use fewer features without losing essential information,
select the most important features (principal components).

Each principal component (PC) is an orthogonal direction
that captures the maximum possible variance in the data.

The most important feature (the first principal component) is
a unit vector w⃗ that maximizes the variance of the projections
of all data points:

w⃗ = arg max
∥w⃗∥=1

1

N

N∑
i=1

(w⃗⊤x⃗i )
2

In other words, we seek the direction in which the data is the
most ”spread out”.
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Unsupervised Learning

The k-Means Clustering Algorithm

PCA Analysis

PCA (Principal Component Analysis)

Each principal component explains a portion of the total
variance in the data.

Common strategy: keep enough components to explain e.g.
90–95% of the total variance.
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Unsupervised Learning

Metrics for Evaluating Clustering Quality

Metrics for Evaluating Clustering Quality

How can we tell if the clusters produced by an algorithm are
actually good?

Visual assessment works only for low-dimensional data (e.g.,
2D or 3D)

For general high-dimensional data, we need to define metrics
that allow automatic evaluation:

Compactness: are the points within a cluster close to each
other?
Separability: are the clusters well separated from each other?

Such metrics can also be used to determine the optimal
number of clusters

However, no single metric works best for all types of data and
situations
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Unsupervised Learning

Metrics for Evaluating Clustering Quality

Metrics for Evaluating Clustering Quality

Silhouette

Measures how close each point in a cluster is to points in the
same cluster compared to points in other clusters.

S(i) =
b(i)− a(i)

max{a(i), b(i)}

S(i) is the silhouette score for point i
a(i) is the average distance from point i to other points in the
same cluster
b(i) is the average distance from point i to points in the
nearest neighboring cluster

The closer the value is to 1, the better the point is assigned;
values around 0 indicate boundary points; negative values
suggest misclassification
A popular metric for selecting the optimal number of clusters
(it should be maximized)
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Unsupervised Learning

Metrics for Evaluating Clustering Quality

Metrics for Evaluating Clustering Quality

Silhouette
Results can be visualized using a silhouette plot:

each sample is represented by a horizontal bar (its length
corresponds to S(i))
ideally, all bars are long and positive
a red vertical line shows the average silhouette score across all
points
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Unsupervised Learning

Metrics for Evaluating Clustering Quality

Metrics for Evaluating Clustering Quality

Davies-Bouldin Index

Measures the compactness of clusters and their separation

Evaluates ”outlierness”of clusters by comparing centroid
distances and intra-cluster distances

DB =
1

k

k∑
i=1

max
j ̸=i

(
si + sj
d(ci , cj)

)
k is the number of clusters
si is the average distance of the points in cluster i from its
centroid ci (compactness)
d(ci , cj) is the distance between the centroids of clusters i and
j
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Unsupervised Learning

Metrics for Evaluating Clustering Quality

Metrics for Evaluating Clustering Quality

Calinski-Harabasz Index

Measures within-cluster similarity and between-cluster
dissimilarity using variance

CH =
B(k)

W (k)
× n − k

k − 1

B(k) is the between-cluster sum of squares
W (k) is the within-cluster sum of squares
n is the total number of points
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Unsupervised Learning

Metrics for Evaluating Clustering Quality

Metrics for Evaluating Clustering Quality

Within-Cluster Sum of Squares (WCSS)

Sum of squared distances between individual points and the
centers of their assigned clusters.

Lower WCSS indicates more compact clusters.

Typically decreases with increasing number of clusters k.

WCSS =
k∑

i=1

∑
x∈Ci

||x − µi ||2

Ci is the set of points assigned to the i-th cluster,
µi is the centroid of the i-th cluster.

Used in the Elbow Method to determine the optimal number
of clusters.
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Unsupervised Learning

Metrics for Evaluating Clustering Quality

How to Use Metrics to Determine the Optimal Number
of Clusters?

WCSS (Elbow Method):

Monitor the decrease in within-cluster sum of squares.

Choose k at the ”elbow”point, where increasing k no longer
significantly reduces WCSS.

elbow
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Unsupervised Learning

Metrics for Evaluating Clustering Quality

How to Use Metrics to Determine the Optimal Number
of Clusters?

WCSS (Elbow Method):
Monitor the decrease in within-cluster sum of squares.
Choose k at the ”elbow”point, where increasing k no longer
significantly reduces WCSS.

Silhouette Score, Calinski-Harabasz Index:
Select the k with the highest index value.

Davies-Bouldin Index:
Select the k with the lowest index value (lower = better
separation of clusters).

Note: Different metrics may suggest different optimal k — it is
advisable to consider multiple criteria when making a decision.

kmeans clustering.ipynb,
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https://github.com/reitezuz/18NES1-2025-/blob/main/week11/kmeans_clustering.ipynb


Neural Networks 1 - Self-organization

Unsupervised Learning

Metrics for Evaluating Clustering Quality

The k-Means Clustering Algorithm

Application: Vector Quantization

The goal is to cover the input space as efficiently as possible
using representatives, respecting the statistical distribution of
the patterns
(similar to density estimation in statistics)

Represent a set of vectors with a smaller subset of
representative vectors

Lossy data compression

vector quantization.ipynb

Explore how clustering can be used for vector quantization:

Try different numbers of centroids and compare the results
Experiment with different images (photographs)
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Hierarchical Clustering

Other Approaches to Clustering

K-means is not the only way to partition data into clusters.

Different algorithms are better suited for different types of
data

Some methods do not require specifying the number of
clusters in advance

Others can detect clusters of arbitrary shapes or handle
categorical data

Common alternatives include:

hierarchical clustering
density-based clustering (e.g., DBSCAN)
spectral clustering - uses the eigenvectors of a similarity graph
to partition data into clusters
model-based clustering (e.g., Gaussian Mixture Models)

Nice comparison: Scikit Learn

29 / 85

https://scikit-learn.org/1.5/auto_examples/cluster/plot_cluster_comparison.html
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Hierarchical Clustering

Hierarchical Clustering

No need to know the expected number of clusters in advance.

Initially, each training sample represents its own cluster.

A distance matrix between training samples is computed.

During learning, the two closest clusters are merged iteratively.

Visualization: dendrogram

Source: Katěrina Horaisová: Slides for the Neural Networks 2 course, FNSPE CTU
Děč́ın
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Hierarchical Clustering

Hierarchical Clustering

How to define distance between clusters Ci , Cj ⊂ Rn?

Single linkage (nearest neighbor)
d(Ci ,Cj) = min{d(x⃗ , y⃗)|x⃗ ∈ Ci , y⃗ ∈ Cj , i ̸= j}
Complete linkage (farthest neighbor)
d(Ci ,Cj) = max{d(x⃗ , y⃗)|x⃗ ∈ Ci , y⃗ ∈ Cj , i ̸= j}
Average linkage d(Ci ,Cj) =

1
mimj

∑
x⃗∈Ci

∑
x⃗ ′∈Cj

d(x⃗ , y⃗)

Centroid linkage d(Ci ,Cj) = d(µ⃗i , µ⃗j)

Ward’s minimum variance method
d(Ci ,Cj) =

mimj

mi+mj
d(µ⃗i , µ⃗j)
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Hierarchical Clustering

Hierarchical Clustering

Single linkage (nearest neighbor, min)
Suitable for elongated clusters, but sensitive to noise.

Complete linkage (farthest neighbor, max)
Prefers compact, spherical clusters.
Reduces the creation of elongated clusters.

Average linkage
A compromise between single and complete linkage.
More stable in the presence of noise.

Centroid linkage
Faster computation, but may sometimes incorrectly merge
distant clusters.

Ward’s method
Minimizes the total within-cluster variance.
Produces compact and similarly sized clusters.
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Hierarchical Clustering

Hierarchical Clustering - Example

Source: Katěrina Horaisová: Slides for the Neural Networks 2 course, FNSPE CTU
Děč́ın 33 / 85
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Hierarchical Clustering

Hierarchical Clustering - Example

Distance matrix between training samples:

Source: Katěrina Horaisová: Slides for the Neural Networks 2 course, FNSPE CTU
Děč́ın
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Hierarchical Clustering

Hierarchical Clustering - Example

Single Linkage

Centroid Linkage, Average Linkage

Ward Linkage, 

Complete Linkage

Source: Katěrina Horaisová: Slides for the Neural Networks 2 course, FNSPE CTU
Děč́ın 35 / 85
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Hierarchical Clustering

Hierarchical Clustering - Example

Center

Source: Katěrina Horaisová: Slides for the Neural Networks 2 course, FNSPE CTU
Děč́ın
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Hierarchical Clustering

Hierarchical Clustering -Example

Think about it: Which variant of hierarchical clustering
would best handle the following example?
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Hierarchical Clustering

Hierarchical Clustering

Reminder: How to compute distance in clustering methods

Euclidean distance: d(p⃗, q⃗) =
√∑n

i=1(pi − qi )2

If only comparing distances (for efficiency):
d(p⃗, q⃗) =

∑n
i=1(pi − qi )

2

Alternative metrics:

Manhattan (city block) distance: d(p⃗, q⃗) =
∑n

i=1 |pi − qi |
Chebyshev distance: d(p⃗, q⃗) = maxi |pi − qi |

Minkowski distance: d(p⃗, q⃗) = (
∑n

i=1 |pi − qi |r )
1
r

Cosine similarity: cos(p⃗, q⃗) = p⃗·q⃗
∥p⃗∥∥q⃗∥

(and others)
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Hierarchical Clustering

Example

Example: Hierarchical Clustering

hierarchical clustering.ipynb

Demonstration of hierarchical clustering using the SciPy
library

Dendrograms shown for different linkage methods (single,
complete, ward, etc.)

Questions:

Observe differences between dendrograms produced using
various distance metrics.

Try to find the optimal combination of distance metric and
number of clusters for each dataset.

Can we determine the number of clusters from a dendrogram?
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https://github.com/reitezuz/18NES1-2025-/blob/main/week12/hierarchical_clustering.ipynb
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Hierarchical Clustering

Example

Example: Hierarchical Clustering

hierarchical clustering.ipynb

Forming clusters based on a dendrogram:

Fixed number of clusters

Cutting the tree at a distance threshold – splits the
dendrogram at a chosen height (height = linkage distance)

Adaptive cutting using inconsistency coefficient – local
decisions based on deviations from earlier merges
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https://github.com/reitezuz/18NES1-2025-/blob/main/week12/hierarchical_clustering.ipynb
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Hierarchical Clustering

Example

Inconsistency Coefficient in Hierarchical Clustering

The inconsistency coefficient helps identify where to cut the
dendrogram based on how much a given merge deviates from
previous (lower-level) merges.

inconsistency(i) =
di − µi

σi

di – height (distance) of the merge at step i

µi – average linkage height of the previous r levels

σi – standard deviation of those r linkage heights

A higher value indicates that the merge likely connects
structurally different clusters.

We cut branches where the inconsistency exceeds a given
threshold – this allows for cutting at varying heights across
the tree.
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Hierarchical Clustering

Example

Hierarchical Clustering

Advantages

Hierarchical structure, easy interpretation.

No need to predefine the number of clusters, low parameter
requirements.

Handles clusters of different shapes better than k-means.

Disadvantages

Computationally expensive.

Cannot update incrementally (online learning is not possible).

Sensitive to the choice of distance metric and linkage method.

Sensitive to outliers.

Interpretation becomes difficult for a large number of clusters.
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Competitive Models

Competitive Models and Competitive Learning

Let us return to the single-layer neural network model.

Key idea: Neurons (representatives, agents) correspond to
points in the input space, each representing one cluster (or
part of it).
The system of representatives (neurons) self-organizes in the
input space (unsupervised learning = self-organization).

x o o

o
o

oo
o

o

o

x

x
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Competitive Models

Competitive Models and Competitive Learning

Basic principle = competition:

Neurons compete for the ,,right” to represent the given input
pattern.

x o o

o
o

oo
o

o

o

x

x

Learning goal:

Place neurons in the centers of the pattern clusters
(centroids) or in a way that reflects the data density (vector
quantization).

Preserve the network structure that has already been formed.
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Competitive Models

Competitive Models and Competitive Learning

K-means is actually a variant of competitive learning:

Winner-takes-all rule: Centroids (representatives) compete
to represent a training pattern. The nearest centroid wins and
blocks others — it ”takes all”.

Typical mechanisms in competitive learning:

Winner-takes-all: only the winning neuron is updated.

Not just winner-takes-all (soft competition): the pattern
affects not only the winner but also nearby neurons
(neighbors).

Lateral inhibition: the winner suppresses the activity of
competitors.
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Competitive Models

Competitive Models – Basic Architecture

A single-layer neural network.

The input layer corresponds to the
input features.

The number of neurons in the
output (competitive) layer
corresponds to the (expected)
number of clusters or
representatives.

x1

ym

wnm

w11

wn1

w1m

y1

xn

Competitive
layer

Input
layer

Each input neuron is connected to every output neuron.

There may also be lateral connections between output
neurons.
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Competitive Models

Competitive Models – Basic Architecture

How do neurons compute their output (activation) for a
given input pattern?

As a distance between the presented input and their weight
vector.

For Euclidean distance (square root can be omitted):

d(x⃗ , w⃗i ) = ||x⃗ − w⃗i ||2 =
n∑

j=1

(xj − wji )
2

For cosine similarity (to be maximized):

d(x⃗ , w⃗i ) = cos(x⃗ , w⃗i ) =
x⃗ · w⃗i

∥x⃗∥∥w⃗i∥

For normalized vectors: d(x⃗ , w⃗i ) = x⃗ · w⃗i

x1

ym

wnm

w11

wn1

w1m

y1

xn

Competitive
layer

Input
layer
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Competitive Models

Competition and Lateral Inhibition

Competitive Models – Principle of Competition

1 Present the input pattern x⃗

2 Neurons compute their activation as the distance between x⃗
and their weight vectors.

3 Neurons then compete for the right to represent the input.

4 The winning neuron (or several) updates its weights to move
closer to the input.

Competition can be implemented in different ways:

1 via lateral connections and lateral inhibition

2 by directly comparing neuron activations (i.e., distances to the
input)
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Competitive Models

Competition and Lateral Inhibition

Competitive Models and Lateral Inhibition

Lateral inhibition principle:

Output neurons are fully connected via fixed lateral weights:
tii = (k − 1) and tij = −1 for i ̸= j (k = number of neurons)
Each neuron iteratively updates its activation:

yi = f

(
k∑

l=1

tliyl

)
where f is typically a sigmoid function.

x1

ym

wnm

w11

wn1

w1m

y1

xn

Competitive
layer

Input
layer

Competitive layer 

4

4

4

4

4

-1

-1

-1
-1

-1

-1-1
-1

-1

-1
-1
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Competitive Models

Competition and Lateral Inhibition

Competitive Models and Lateral Inhibition

More active neurons suppress (inhibit) the activity of the
others.

Expected result after a few iterations: one neuron remains
active, others are inhibited.

Competitive layer 

4

4

4

4

4

-1

-1

-1
-1

-1

-1-1
-1

-1

-1
-1
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Competitive Models

Competition and Lateral Inhibition

Competitive Models and Lateral Inhibition

How to implement competition between neurons:
1 Using lateral connections and iterative computation:

Does not always produce good results – can blur the
differences between neuron activities.

2 By comparing neuron outputs directly (i.e., distances to the
input pattern):

The winner is the neuron with the highest activation (or lowest
distance) – winner takes all.
Easier to implement, more stable in practice.

51 / 85



Neural Networks 1 - Self-organization

Competitive Models

WTA model

Competitive Models – Winner Takes All (WTA) Variant

Adaptation rule:

The winning neuron i updates its weights to move closer to
the presented input pattern x⃗ :

w⃗i (t + 1) =
w⃗i (t) + αx⃗

∥w⃗i (t) + αx⃗∥
(for cosine similarity, Hebbian rule)

w⃗i (t + 1) = w⃗i (t) + α (x⃗ − w⃗i (t))

(for Euclidean distance, difference rule)

Learning rate ... α

α = 1 ... complete update to match the input
0 < α < 1 ... partial update toward the input pattern
α = 0 ... no update (converged state)

With constant α, the network usually does not converge ... we
require α → 0 over time.
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Competitive Models

WTA model

Competitive Models – Winner Takes All (WTA) Variant
Formal Algorithm (Euclidean Distance)

Input

Training set T = {x⃗1, ..., x⃗N} in Rn

Single-layer neural network with k output neurons.

Initialization

Initialize weight vectors w⃗1, .., w⃗k randomly (or by choosing k
random examples from T )

Repeat:

Randomly select an input x⃗ ∈ T

Compute d(x⃗ , w⃗i ) for i = 1, ..., k

Choose winner neuron m such that d(x⃗ , w⃗m) ≤ d(x⃗ , w⃗i ) for all
i

Update:
w⃗m(t + 1) = w⃗m(t) + α (x⃗ − w⃗m(t))
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Competitive Models

WTA model

Competitive Models – Winner Takes All (WTA) Variant
Applications

Clustering
Online learning — essentially an online version of the
k-means algorithm (i.e. k-means is the batch version of WTA
competitive learning)
Easy identification of cluster representatives w⃗i

The number of clusters is fixed in advance
More robust to noise than k-means

Data compression, feature extraction, dimensionality reduction

Anomaly detection

kmeans clustering.ipynb
neural gas.ipynb
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Competitive Models

WTA model

Competitive Learning – Winner Takes All Variant
Limitations

Common issues (similar to k-means):

Learning rate α must be carefully chosen

Weight initialization significantly impacts training speed
e.g. use randomly selected input vectors

Distribution of neurons may not reflect data density

Dead neurons – some neurons may never win
Normalize weight vectors
Controlled competition: track how often each neuron wins
(conscience mechanism)
Soft competition (winner doesn’t take all)
Introduce topological neighborhood structures, e.g., grid in a
Kohonen layer

kmeans clustering.ipynb
neural gas.ipynb
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Competitive Models

Neural Gas

Competitive Learning – “Winner Doesn’t Take All”
Variant

Neural Gas (soft competition):

Idea: Each neuron has a degree of “sensitivity” to the training
sample based on its distance from it.

Unlike classic “winner-takes-all” where only one neuron is
updated, here we update all neurons depending on how close
they are to the input.

Over time, both the learning rate and neighborhood size
decrease — the system gradually stabilizes.

Variants:

Sometimes, the neuron’s rank (order by distance) is used
instead of the distance itself.

The winner moves toward the sample, and others in its
vicinity may be pushed away.
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Competitive Models

Neural Gas

Competitive Learning – “Winner Doesn’t Take All”
Variant

Input:

Training set T = {x⃗1, ..., x⃗N} in Rn

Single-layer neural network with k output neurons

Initialization:

Initialize weight vectors w⃗1, .., w⃗k randomly (or by randomly
selecting k samples from T ).
Set a large initial neighborhood and high learning rate.

Repeat:

Randomly select x⃗ ∈ T
Compute d(x⃗ , w⃗i ) for i = 1, ..., k
Update:

Adjust positions of all w⃗i based on their distance to x⃗ and the
current neighborhood size
Decrease the learning rate and neighborhood size over time
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Competitive Models

Neural Gas

Competitive Learning – “Winner Doesn’t Take All”
Variant

Advantages of Neural Gas over WTA:

Smooth learning: Multiple neurons are updated based on
distance or rank.

More stable training: Lower risk of so-called “dead neurons”.

Better space coverage: Neurons tend to spread more evenly
across the input space.

Disadvantages / limitations:

Efficiency – the need to compute neuron rankings at every
iteration

Dynamic neighborhood – spatial relations among neurons can
change during training

Example (Notebook):
neural gas.ipynb
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Self-Organizing Maps (SOM)

Self-Organizing Maps (SOM, Kohonen Maps)
Teuvo Kohonen, 1981

Original application: Phonetic typewriter (speech → text in
Finnish)

Biological Motivation:

In the cerebral cortex,
specific areas of
neurons are more
responsive to certain
types of stimuli.

Physically nearby neurons tend to respond similarly – lateral
connections cause excitation of nearby neurons and inhibition
of more distant ones.

Source: https://cybernetist.com/2017/01/13/self-organizing-maps-in-go/
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Self-Organizing Maps (SOM)

Self-Organizing Maps – Architecture (Topology)

1D architecture – linear chain:

2D architecture – grid:

Neurons are arranged
topologically in a grid

The grid defines physical
neighborhood between
neurons
(× logical proximity in
weight space)

Neighboring neurons should
respond to similar inputs

Paul Rojas: Neural Networks – A Systematic Introduction, Springer, 1996
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Self-Organizing Maps (SOM)

Self-Organizing Maps – Grid Topologies

Examples of 2D grid topologies:
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Self-Organizing Maps (SOM)

Self-Organizing Maps – Learning

Learning process:

1 Present an input vector x⃗

2 Each neuron computes its
(Euclidean) distance to x⃗

3 The neuron with the smallest
distance is the winner (Best
Matching Unit – BMU)

4 The BMU and its neighbors update
their weights

Weight adaptation:

Neighboring neurons should respond similarly
� mapping preserves topological structure
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Self-Organizing Maps (SOM)

SOM – Adaptation Rule

Adaptation

Let k be the winning neuron for the presented input vector x⃗

Each neuron i updates its weights according to the rule:

∆w⃗i = αΛ(i , k)(x⃗ − w⃗i )

Neighborhood function = lateral interaction function Λ(i , k)

Represents the strength of lateral interaction between neurons
i and k during training

Should decrease with increasing distance between neurons i
and k in the grid

Determines whether and how strongly neuron i will be
updated, depending on its distance from the winning neuron
k
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Self-Organizing Maps (SOM)

SOM – Neighborhood Definition (1D Chain)

1D Neighborhood:

Neurons are arranged in a sequence and indexed 1, . . . ,m

A neuron with index k has neighbors k − 1 and k + 1 (unless
on the edge)

Paul Rojas: Neural Networks – A Systematic Introduction, Springer, 1996
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Self-Organizing Maps (SOM)

SOM – Neighborhood Definition (2D Grid)

Neighborhood in multiple dimensions (2D grid):

Similarly, the neighborhood of a neuron k (radius = 1)
includes neurons connected via lateral links

Any grid metric can be used: square, hexagonal, etc.
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Self-Organizing Maps (SOM)

SOM – Neighborhood Function (Lateral Interaction)

Neighborhood function Λ(i , k):

Λ(i , k) = strength of lateral connection between neurons i
and k during learning

Should decrease with increasing distance between neurons i
and k

Example – Discrete Neighborhood:

Λ(i , k) = 1 if neuron i is in neighborhood of k (within radius
σ), otherwise 0

Efficient to implement – only neighbors are updated

σ = neighborhood width (e.g. σ = 1)
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Self-Organizing Maps (SOM)

SOM – Neighborhood Function (continued)

Mexican Hat function:

Most biologically realistic

Gaussian function:

Λ(i , k) = exp
(
− |w⃗i−w⃗k |2

σ2

)
σ is the neighborhood width (typically decreases: σ → 0)
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Self-Organizing Maps (SOM)

SOM – Weight Adaptation and Parameters

Weight Update:

Let k be the winning neuron (BMU) for input x⃗

Each neuron i updates its weights as:

∆w⃗i = αΛ(i , k)(x⃗ − w⃗i )

Adjustable Parameters:

Learning rate α (vigilance coefficient): α ∈ (0, 1)

Fixed α prevents convergence – typically α → 0

Neighborhood width σ

Typically decreases: σ → 0
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Self-Organizing Maps (SOM)

SOM – Learning Algorithm

1 Initialization:
Randomly initialize weights of output neurons. Set initial
learning rate α, neighborhood width σ, and interaction
function Λ.

2 Repeat:
1 Present the next training vector x⃗
2 Compute distance di between x⃗ and w⃗i for each output neuron:

di =
∑
j

(xj − wji )
2

3 Select neuron k with smallest dk as the winner
4 Update weights of all (or neighboring) neurons:

w⃗i (t + 1) = w⃗i (t) + α(t)Λ(i , k)(x⃗ − w⃗i (t))

69 / 85



Neural Networks 1 - Self-organization

Self-Organizing Maps (SOM)

Self-Organizing Maps

Example – Uniformly distributed data and 1D chain

Simon Haykin: Neural Networks and Learning Machines, 3rd edition, 2008
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Self-Organizing Maps (SOM)

Self-Organizing Maps

Example – Uniformly distributed data and 2D grid

Paul Rojas: Neural Networks – A Systematic Introduction, Springer, 1996
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Self-Organizing Maps (SOM)

Self-Organizing Maps

Example – Non-uniformly distributed data and 2D grid
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Self-Organizing Maps (SOM)

Applications

Self-Organizing Maps – Interpretations

Two possible interpretations for applications:

1 Dimensionality reduction with topology preservation

2 Clustering
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Self-Organizing Maps (SOM)

Applications

SOM – Dimensionality Reduction with Topology
Preservation

The network maps an
n-dimensional input space into a
2D output space

Neighborhood in the input space is
preserved

For very dense grids, the
transformation is continuous

Enables effective data visualization

Example:

2D grid in 3D input
space
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Self-Organizing Maps (SOM)

Applications

SOM – Dimensionality Reduction Example: WebSOM

Dimensionality reduction
with topology preservation

Application example:
WebSOM (1998)

2D visualization of
similarity among web
documents
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Self-Organizing Maps (SOM)

Applications

SOM – Clustering Interpretation

Clustering interpretation:

The weight vector of each
output neuron represents a
point in the input space

Neurons cover the input
space and reflect its density
(vector quantization)

Output neurons serve as
cluster representatives

Additionally, the
neighborhood structure is
preserved
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Self-Organizing Maps (SOM)

Learning Algorithm Analysis

SOM – Learning Algorithm Analysis

Key questions: How well has the SOM learned?

Has the algorithm converged? How long does training take?

To what extent is the topology preserved?

Is the resulting mapping correct or meaningful?

How do hyperparameters α, σ influence the result?
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Self-Organizing Maps (SOM)

Learning Algorithm Analysis

SOM – How well has the network learned?

Example: a well-trained model vs. a suboptimal one
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Self-Organizing Maps (SOM)

Learning Algorithm Analysis

SOM – How well has the network learned?

Within-Cluster Sum of Squares (WCSS):

Measures compactness of clusters: sum of squared distances
from inputs to their best-matching unit (BMU)

WCSS =
k∑

i=1

∑
x⃗∈Ci

∥x⃗ − µi∥2

Topographic Error:

Measures topology preservation: proportion of samples where
the first and second BMUs are not adjacent in the SOM grid

E =
1

n

n∑
i=1

u(x⃗i )

where u(x⃗i ) = 1 if the first and second BMUs are not
neighbors, otherwise 0.
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Self-Organizing Maps (SOM)

Learning Algorithm Analysis

SOM – Impact of Parameters

Choice of parameters α (learning rate), σ (neighborhood
width) has a major impact:

Depends on the task and dataset
Rapid decrease of σ can lead to topological defects (e.g., map
twisting or folding)

Rapid decrease of α can freeze the learning process in a poor
local minimum or prevent convergence entirely 80 / 85
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Self-Organizing Maps (SOM)

Learning Algorithm Analysis

SOM – Two-Phase Adaptation Strategy

Two distinct learning phases:

Organization phase (topology shaping):
Neighborhood covers most or all of the map
α is relatively large and stable

Convergence phase (fine-tuning):
Neighborhood size shrinks to 1 (only the BMU is adapted)
α decreases rapidly toward 0
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Self-Organizing Maps (SOM)

SOM – Visualization

SOM – Visualization

2D input data – easily visualized:

For higher dimensions:

U-matrix (Unified Distance Matrix) – shows distances
between neighboring neurons, Weight Planes
Projection into 2D:

Using PCA
Using Sammon’s mapping 82 / 85
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Self-Organizing Maps (SOM)

SOM – Visualization

SOM – U-Matrix Visualization

U-Matrix (Unified Distance Matrix):

Matrix showing distances between neighboring neurons’
weight vectors

Darker color = larger distance

Clusters appear as ”valleys”, boundaries as ”ridges”

83 / 85



Neural Networks 1 - Self-organization

Self-Organizing Maps (SOM)

SOM – Visualization

SOM – Sammon Mapping

Sammon Projection:

Repositions data points in a low-dimensional space (not axis
projection)

Attempts to preserve distances between data points

Source: Katěrina Horaisová – Neural Networks 2 (FJFI ČVUT Děč́ın)

84 / 85



Neural Networks 1 - Self-organization

Self-Organizing Maps (SOM)

Examples

Kohonen Maps – Examples

We will work with the MiniSom library

SOM countries.ipynb - dimensionality reduction

SOM clustering.ipynb - clustering
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