Neural Networks 1 - Self-organization

Neural Networks 1 - Self-organization 18NES1 - Lecture 11, Summer semester 2024/25

Zuzana Petříčková

April 29th, 2025

1/18

イロン 不同 とくほど 不良 とうほ

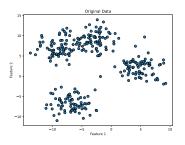
This Week

Unsupervised Learning (Self-Organization)

- General Overview
- Classification and the k-Nearest Neighbors Algorithm
- Clustering and the k-Means Algorithm
- Demonstrations and examples

Unsupervised Learning and Self-Organization

- Training set T in the form $T = {\vec{x_1}, \dots, \vec{x_N}}$ (only inputs)
- $\vec{x_i} \in \mathbb{R}^n$ is the *i*-th training input pattern, target outputs are unknown
- Idea: the model itself decides which response is best for a given input and adjusts its weights accordingly \rightarrow self-organization



- We have data but no knowledge of its internal structure
- The goal is to uncover the structure and patterns within the data

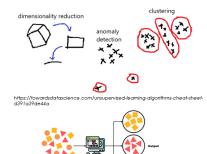
イロト イヨト イヨト イヨト 二日

Neural Networks 1 - Self-organization Unsupervised Learning

Unsupervised Learning and Self-Organization

- Goal: to discover structure or patterns within the data
- Applications:
 - Dimensionality reduction (data compression, visualization)
 - Anomaly detection (e.g., in banking transactions)
 - **Clustering** (e.g., customer segmentation, plagiarism detection)
 - E-commerce: recommendation systems

Types of Tasks:



https://eastgate-software.com/what-is-unsupervised-learning/#ftoc-heading-7

Neural Networks 1 - Self-organization Unsupervised Learning Clustering

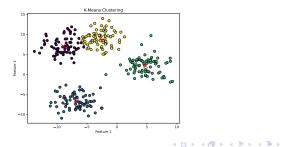
Unsupervised Learning and Self-Organization

Cluster

- A group of samples with high similarity among themselves and low similarity to samples in other clusters
- In simplified terms: similarity = proximity

Clustering

• Disjoint partitioning of data into clusters

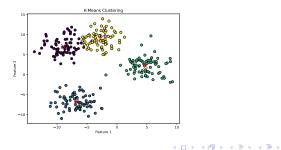


Neural Networks 1 - Self-organization Unsupervised Learning Clustering

Clustering

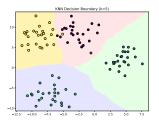
Challenges:

- How to determine the number and distribution of clusters in the feature space?
- How to choose the representative(s) of a cluster?
 - Appropriately selected training samples belonging to a cluster
 - Example: the centroid of a cluster



Detour: k-Nearest Neighbors Algorithm

- A classification method using supervised learning: Training patterns are stored and classified into one of *I* different classes
- An unknown input vector is assigned to the class most common among the k nearest vectors from the stored set



Detour: k-Nearest Neighbors Algorithm

How to compute the distance (similarity) between numerical vectors?

- Euclidean distance: $d(\vec{p}, \vec{q}) = \sqrt{\sum_{i=1}^{n} (p_i q_i)^2}$
- When only comparing distances (for efficiency), it is common to use the squared distance:

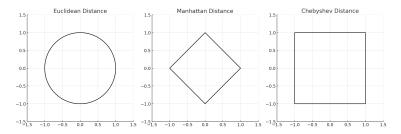
 $d(\vec{p},\vec{q})=\sum_{i=1}^{n}(p_i-q_i)^2$

Other distance metrics include:

- Manhattan (city block) distance: $d(\vec{p}, \vec{q}) = \sum_{i=1}^{n} |p_i q_i|$
- Chebyshev distance: $d(\vec{p}, \vec{q}) = \max_i |p_i q_i|$ "What is the biggest problem?"
- Minkowski distance: $d(\vec{p}, \vec{q}) = (\sum_{i=1}^{n} |p_i q_i|^r)^{\frac{1}{r}}$ Generalizes the previous metrics $(r = 2, r = 1, r \to \infty)$
- Cosine similarity: cos(p, q) = privative quantum quantum

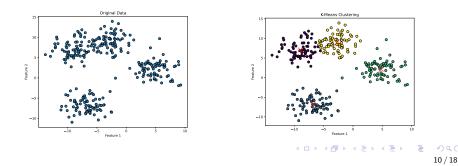
Detour: k-Nearest Neighbors Algorithm

How to compute the distance (similarity)?



The k-Means Clustering Algorithm

- Unsupervised learning
- Input patterns are classified into k different clusters, each cluster l is represented by its centroid c
 _l
- A new vector \vec{x} is assigned to the cluster *i* whose centroid $\vec{c_l}$ is closest to it



The k-Means Clustering Algorithm

- **(**) Given a training set $T = {\vec{x_1}, ..., \vec{x_N}}, \vec{x_i} \in \mathbb{R}^n$
- Select k random vectors $\vec{c}_l, l = 1, ..., k$ (from \mathbb{R}^n or from T) as initial cluster centroids
- 8 Repeat:
 - \bullet Assign each vector from ${\mathcal T}$ to the nearest cluster centroid
 - Recalculate the cluster centroids based on assigned patterns:

$$ec{c}_{l} = rac{1}{n_{l}}\sum_{l_{i}=1}^{n_{l}}(ec{x_{l_{i}}})$$

where n_l is the number of vectors assigned to cluster l, and l_i indexes vectors assigned to cluster l

• Repeat the above steps until the cluster memberships of training patterns no longer change

Initialization in k-Means

- The result of k-means depends heavily on the initial choice of centroids.
- \bullet Poor initialization \to poor clustering, slow convergence, getting stuck in a local minimum.
- Initialization options:
 - Random vectors in \mathbb{R}^n or within the range of the data
 - Random selection of points from the training set T
 - k-means++:
 - First centroid is chosen randomly
 - Subsequent centroids are chosen with probability proportional to the square of the distance to the nearest already chosen centroid
 - Running the algorithm multiple times and selecting the best solution (lowest sum of squared distances)

Parameters of the k-Means Algorithm

- Number of clusters k (usually specified by the user)
- Distance metric (default: Euclidean)
- Initialization method (random, k-means++, custom choice)
- Stopping criteria:
 - until cluster memberships stop changing
 - until centroids stop changing
 - reaching a maximum number of iterations
- Further improvements: If a centroid has no points assigned, reinitialize it

Example (Demonstration)

kmeans_clustering.ipynb

- Demonstration of a custom implementation of the k-means algorithm with visualization of the learning process
- Several datasets and different initialization options

Questions:

- How does centroid initialization affect learning?
- How long does learning take for larger datasets?
- How to find the optimal number of clusters?
- How to evaluate the quality of the clusters formed?

The k-Means Clustering Algorithm

Advantages

- Fast algorithm, easy to implement
- Suitable for quick insight into data structure

Disadvantages

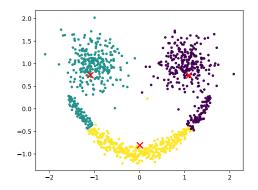
- The number of clusters must be specified in advance
- Batch processing (problematic for large data or online learning)
- High sensitivity to the initial choice of centroids
- Sensitive to outliers
- May fail for complex data structures: seeks spherical clusters
- Problematic for high-dimensional data (*curse of dimensionality*), or strongly correlated features

イロト 不同 トイヨト イヨト 二日

The k-Means Clustering Algorithm

Examples of More Complex Tasks:

kmeans_clustering.ipynb



The k-Means Clustering Algorithm

Disadvantages and Their Solutions

- The number of clusters must be specified in advance
 → try different values of k and choose the best one
- Batch processing (problematic for large datasets or online learning)
 - \rightarrow minibatch or online k-Means
- High sensitivity to the initial choice of centroids \rightarrow enhanced initialization
- Sensitivity to outliers
 - \rightarrow data normalization:
 - also ensures invariance to scaling and translation
 - but may not always help

The k-Means Clustering Algorithm

Disadvantages and Their Solutions

- May fail for complex data structures: tends to find spherical clusters
 - \rightarrow use a different distance metric
- Problems with high-dimensional input data (*curse of dimensionality*), or strongly correlated features
 → apply PCA (Principal Component Analysis) for input preprocessing